Frequently in tech support, when a difficult-to-converge model comes in, one of the first things we check is whether or not any tees in the model are being modeled as detailed tees. The reason for this is that the hydraulic calculations involving detailed tees can be complex due to the interdependence between velocity and pressure loss for each pipe connected to the tee. Iteration must, therefore, be performed to find a pressure loss and flow through each connecting pipe that agrees with the rest of the flow and pressure solutions in the model. This begs the question, then, what calculations are...
In AFT Fathom and AFT Impulse, it is possible to model a submerged pump where a short and possibly frictionless suction pipe for the pump’s inlet does not need to be modeled. When modeling a submerged pump, there are two options available for specifying the system inlet boundary condition at the pump suction. As shown in Figure 1 below, the Submerged Pump’s Suction Pressure can either be specified as “Head (HGL)” or “Pressure”. Modeling a submerged pump is not the only time where the “Head (HGL)” or “Pressure” choices will arise. If an Exit Valve (i.e., a valve that discharges...
AFT Fathom can easily generate a pump and system curve for your piping system. Creating a pump and system curve for a simple system with a single flow path and no control features is an easy and typically well-understood process. However, as piping systems are quite complicated with lots of branch points, control features, and dynamic interactions, creating a useful system curve can quickly become a common source of confusion. This three-part blog series is going to help clarify concepts regarding pump and system curves to better understand them. This Part 1 blog will discuss the basics of what pump...
Have you ever finished running an AFT Impulse model and then received the following Warning message shown in Figure 1 and then wondered what it means? During a waterhammer analysis, the flowrates are constantly changing all throughout the system, therefore, the velocities and Reynold's numbers are also constantly changing. The friction factors will also be constantly changing during the transient. By default, AFT Impulse will use the friction factors that are obtained during the steady-state analysis and then use the same friction factors during the transient and they will be assumed to remain constant. Since it is possible for the flowrates...
November 21, 2016, marks AFT Impulse's 20th anniversary! Below is a timeline that captures a few of the most significant ways it has evolved from Version 1.0 to Version 6.0.
They say that time is of the essence, and as engineers, that couldn’t ring truer! AFT pipe flow software is there to help engineers save time by more safely, efficiently, and rapidly designing and analyzing their piping systems. AFT Impulse, Applied Flow Technology’s waterhammer tool, helps engineers analyze transient incompressible flow behavior that can cause potentially detrimental pressure surges. It uses the Method of Characteristics, which requires the pipes to be sectioned using a Characteristic Grid. In this Characteristic Grid, all of the pipes are broken into an integer number of section lengths, and pressure waves are assumed to propagate through...
Previously, we talked about the Graph Guide, creating Stacked graphs and Dual-Y graphs, and visualizing the results using Animated graphs. This final installment will focus on the various ways to format graphs so they are exactly how you want them to look. In general, there are several ways to set the formatting for the various parts and regions of a graph. I will start with the model we made in the previous blog – the AFT Impulse model, ‘Pump Startup With Event Transient.imp’, which is installed in the Examples folder. Many of the formatting options are gathered together on the Formatting...
AFT uses cookies to offer you a better browsing experience and analyze site traffic.
By using our website, you consent to our use of cookies. For more information, view the AFT Privacy Policy.