AFT Blog

Welcome to the Applied Flow Technology Blog where you will find the latest news and training on how to use AFT Fathom, AFT Arrow, AFT Impulse, AFT xStream and other AFT software products.

Determine Your Pumps BEP and Know API-610's Recommendations

What is BEP & why is it important? Every pump has an ideal range of operation where the pump is most efficient. The peak of the efficiency curve is known as the best efficiency point (BEP). Determining how far your pump is operating from its BEP is critical to increasing pump reliability and efficiency as well as meeting API 610 recommendations. AFT Fathom models pump curves with efficiency data and will determine the margin between the simulated operation of the pump and the actual best efficiency point. Our friends at Empowering Pumps shared an article titled, "Some Effects of Operating Pumps Away from Best Efficiency Point" which...

Continue reading
  15931 Hits

Planning for Success by Predicting Failure – Maximizing Reliability During Pump Selection

What comes to mind when you hear the expression “planning for failure”? For some, it carries the negative connotation that failure is the direct result of a design – intentionally or otherwise. Benjamin Franklin said; “If you fail to plan, you are planning to fail!” and I believe he would agree that any good plan addresses potential failures. In fact, not "planning for failure" as an element of a system is essentially failing to plan and therefore inviting unexpected and unmitigated failures. Life Cycle Cost One of the many reasons to avoid failure when possible is to reduce cost. When a...

Continue reading
  3974 Hits

Reaching Equilibrium: System Energy Balance in AFT Fathom and AFT Arrow

AFT Fathom and AFT Arrow both have the powerful ability to model heat transfer in pipes and heat exchangers, allowing you to represent these critical features of temperature-sensitive systems in your hydraulic model. However, without being able to see the affect heat transfer has on an entire system these features would be of limited usefulness. One of the most powerful aspects of AFT’s implementation of heat transfer is that energy is balanced across the entire system. For example, you can observe changes in pump or control valve operation when adding heat transfer to a remote part of a system. Looking at...

Continue reading
  5083 Hits

Let the Heat Flow: Modeling Heat Transfer in Pipes in AFT Fathom and AFT Arrow

Among the many talents of AFT Fathom and AFT Arrow software is the ability to model heat transfer. While a major source of heat transfer is heat exchangers, this blog will address heat transfer that occurs in pipes. First, for the basics: Just what is heat transfer? Well, heat transfer occurs when there is a temperature difference between two objects at different temperatures. As all engineers know, the common theme of physics is that matter and energy alike travel spontaneously from higher, more chaotic surroundings to calmer, lower energy situations (not unlike the stereotypical engineer), and heat transfer is no different....

Continue reading
  15125 Hits

Bring the Heat: Modeling Heat Transfer in Heat Exchangers in AFT Fathom and AFT Arrow

Heat exchangers are some of the most expensive pieces of process equipment, so it is crucial that their pressure losses and heat transfer are well understood. AFT Fathom and AFT Arrow allow users to model heat exchangers within their piping systems. Pressure loss models include input K factors, resistance curves, or tube bundle information. When energy balances are being considered, users can choose between 11 heat transfer models in AFT Fathom and 12 heat transfer models in AFT Arrow to best meet their hydraulic modeling needs. While AFT Fathom and AFT Arrow can also model heat transfer in pipes, this blog...

Continue reading
  7180 Hits

Are you for real? Understanding and Troubleshooting Artificial Transients in AFT Impulse

I tend to reflect on the truly endless list of things I am so grateful for. While this list is by no means exhaustive, some of these things include my loved ones, my awesome job at AFT, the bounty of pumpkin-flavored treats that sweeten up my fall-time snacking options, and of course, AFT Impulse’s detection of artificial transients. While the dreaded Warning message that an artificial transient triggers can cause any engineer’s stomach to turn, I’ll explain why every AFT Impulse user should add this feature to his/her list of things to be thankful for as well. Let’s start with an...

Continue reading
  6829 Hits

Using Branch Junctions to Model Desuperheaters

Superheated steam is often used in mechanical power applications, such as driving turbines. For heating or industrial processes, however, saturated steam is more efficient. Desuperheaters are used to lower the temperature of superheated steam, so that it can be more effectively used in industrial processes. A desuperheater lowers the temperature of the steam by injecting water. Now, the question is, how can you model a desuperheater within AFT Arrow? AFT Arrow is a single-phase program for compressible flow, so it cannot model liquid water. Conveniently though, there is a feature built into the branch junction that can model a desuperheater. You may...

Continue reading
  3532 Hits
Log in

Login to your account

Username *
Password *
Remember Me

Create an account

Fields marked with an asterisk (*) are required.
Name *
Username *
Password *
Verify password *
Email *
Verify email *
Captcha *
Reload Captcha
© 1996 - 2023 Applied Flow Technology