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ABSTRACT 
The Joukowsky equation has been used as a first approximation for 

more than a century to estimate water hammer pressure surges. However, 
this practice may provide incorrect, non-conservative, pressure 
calculations under several conditions. These conditions are typically 
described throughout fluid transient text books, but a consolidation of 
these issues in a brief paper seems warranted to prevent calculation errors 
in practice and to also provide a brief understanding of the limits and 
complexities of water hammer equations. 

To this end, various issues are discussed here that result in the 
calculation of pressures greater than those predicted by the Joukowsky 
equation. These conditions include reflected waves at tees, changes in 
piping diameter, and changes in pipe wall material, as well as frictional 
effects referred to as line pack, and the effects due to the collapse of vapor 
pockets. In short, the fundamental goal here is to alert practicing 
engineers of the cautions that should be applied when using the 
Joukowsky equation as a first approximation of fluid transient pressures. 
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NOMENCLATURE AND SYMBOLS 
a wave speed, m/s (ft/s) 
A pipe cross-sectional area, m2 (ft2) 
Cv valve flow coefficient, gpm/�psid 
D pipe inside diameter, m (ft) 
f friction factor (Darcy/Moody) 
g gravitational acceleration, 9.81 m/s2 (32.174 ft/s2) 
H piezometric head, m (ft) 
ΔHJ piezometric head change, Joukowsky Eq. 1, m (ft) 
P pressure, kPa (psi) 
ΔPfr friction recovery pressure, kPa (psi) 
ΔPJ pressure change, Joukowsky, Eq. 3, kPa (psi) 
ΔPmax maximum total pressure, kPa (psi) 
Q volumetric flow rate, m3/s (ft3/s) 
V velocity, m/s (ft/s) 
ρ liquid density, kg/m3 (lbm/ft3) 

ABBREVIATIONS 
DGCM Discrete Gas Cavity Model 
DVCM Discrete Vapor Cavity Model 
MOC Method of Characteristics 

INTRODUCTION 
The rigorous study of water hammer reaches back into the 19th 

century (Bergant et al. [1], Ghidaoui et al. [2]). Among the excellent text 
books on water hammer are those of Thorley [3], Wylie and Streeter [4], 
Swaffield and Boldy [5], Leishear [6], and Chaudhry [7]. 

The field of water hammer is well established in academia as well 
as in industry, where industry is often tasked with designing complicated 
piping systems sometimes many kilometers in length. Further, engineers 
in industry are typically under budgetary and schedule constraints and 
often need to make decisions with sometimes incomplete and imperfect 
information. As a result, in many cases engineers in industry rely on 
quick, handbook formulas to make decisions based on estimates. One 
such powerful and important formula for water hammer is usually 
credited to Joukowsky [8] and is therefore often called the “Joukowsky 
equation”. Other names that one finds in industry for this equation are, 
in various forms, the “Basic Water Hammer Equation”, the 
“Instantaneous Water Hammer Equation” and the “Maximum 
Theoretical Water Hammer Equation”. Note that research in recent years 
showed that researchers prior to Joukowsky discovered this same 
equation, but Joukowsky’s name is most often associated with this 
equation. For more on the history of water hammer, consult Tijsseling 
and Anderson [9]. 

Just two decades ago water hammer was still largely considered by 
industry to be a niche specialty. As a result, water hammer studies were 
often outsourced to specialized and experienced consultants. In the last 
two decades, there has been a significant growth in the availability of 
user-oriented (i.e., graphically based and menu-driven) commercial 
software for water hammer simulation (Ghidaoui et al. [2]).  

While there is certainly an overall appreciation for the water 
hammer phenomenon in industry, mistakes are easily made when using 
the simplified Joukowsky equation. This equation can be mistakenly 
misunderstood in industry to be a worst case, conservative equation. A 
clear understanding is demanded with respect to the situations where 
non-conservative pressure estimates are obtained when using this 
equation. 

Academic papers acknowledge that the Joukowsky equation is not 
always conservative, but that knowledge does not always make its way 
into industrial applications. The purpose of this paper is to identify for 
the practicing engineer those situations where the Joukowsky equation 
does not provide worst case, conservative pressure predictions. This 
knowledge should result in safer and more cost-effective piping systems. 

THE JOUKOWSKY EQUATION 
The Joukowsky equation relates the increase in piezometric head or 

pressure resulting from an instantaneous reduction in velocity (often 
conceptualized as an instant valve closure). Water hammer theory 
historically started under the purview of civil engineers for large-scale 
water works projects. As such, Joukowsky presented his equation in 
terms of piezometric head (e.g., see Thorley [3], Wylie and Streeter [4], 
Swaffield and Boldy [5] and Chaudhry [7]): 
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∆HJ  = - a∆V⁄g (1) 

The fundamental relationship between head change and pressure change 
is given by: 

∆P  =  ρg∆H (2) 

Hence the Joukowsky equation 1 can also be written in a form more 
frequently used by mechanical engineers (Leishear [6]): 

∆PJ  = - ρa∆V (3) 

where ΔPJ equals the pressure change due to a fluid transient (note that 
some call this the potential surge), 𝜌𝜌 is the density, a is the wave speed 
(also known as the celerity), and ∆𝑉𝑉 is a change in fluid velocity. 
Equations 1 and 3 are both equally valid equations to communicate the 
instantaneous velocity reduction principle.  

An important parameter in Eqs. 1 and 3 is the wave speed, “a”. The 
wave speed expresses the propagation velocity of a pressure wave in a 
pipe. It is less than the liquid acoustic velocity (speed of sound in the 
unconfined liquid) and depends on the pipe material and liquid in the 
pipe, as well as on the external pipe supports and piping dimensions. It 
can be predicted with modest accuracy by equations developed in the 
literature and can also be measured in installed systems. Consult the 
previously cited texts for more information on wave speed and analytical 
prediction methods. In zero-g systems (such as those found in some space 
system applications), Eq. 1 is undefined when dividing by zero g. The 
Eq. 3 formulation retains applicability in such cases. This topic is 
explored in more depth in Walters [10]. 

Throughout this paper the authors refer to both Eqs. 1 and 3 
interchangeably, where these two equations are understood to be 
essentially equivalent. 

Unappreciated Limitations of the Joukowsky Equation 
Undoubtedly, Eq. 1 was a significant contribution to the practice of 

piping engineering at the turn of the 20th century. Even at that time, many 
of the limitations to applying Eq. 1 were discussed. However, practicing 
engineers may be unaware of these limitations, and engineering 
handbooks often gloss over these limitations for brevity. 

In principal, Eq. 1 only claims validity the moment after the velocity 
decrease (e.g., valve closure). However, practicing engineers often apply 
it as if it retains validity both immediately after the velocity 
decrease/valve closure as well as at all times thereafter, assuming that no 
other independent transients occur.  

Since Eq. 1 is often applied in this manner, the limitations of this 
equation are discussed with respect to its validity after the initial transient 
occurs. These limitations are as follows: 

• Straight, constant diameter piping of uniform material, wall
thickness, and structural restraints

• Uniform pipe friction
• Minimal friction pressure drop in piping (explained in a later

section)
• Minimal fluid-structure interaction with the piping and

supports
• No cavitation or gas release
• No trapped, or entrained, gases in the piping (i.e., it is 100%

full of liquid)
• No external heat transfer that can change any of the piping

and fluid physical properties or cause phase changes
• Constant liquid density and constant bulk modulus
• One-dimensional fluid flow
• Linearly elastic piping material

Example 1: Joukowsky Equation Calculation 
To introduce the equations, consider an example that applies Eqs. 1 

and 3. This example is adapted from Chaudhry ([7] p. 10). Compute the 
conditions in a 0.5 m (1.64 ft) diameter pipe conveying oil. Determine 
the pressure increase if the steady volumetric flow rate of 0.4 m3/s (14.1 
ft3/s) is instantaneously stopped at the downstream end. Assume the oil 
density is 900 kg/m3 (56.2 lbm/ft3) and the wave speed is 1,291 m/s 
(4,236 ft/s).  

 A = πD2/4 = 0.196 m2 (2.11 ft2)  (4) 

ΔV = ΔQ/A = -2.04 m/s (-6.68 ft/s)     (5) 

From Eq. 1: 

ΔHJ = -aΔV /g = - (1291 m/s)(-2.04 m/s) / (9.81 m/s2) 
= 268 m (880 ft) (6) 

From Eq. 3: 

ΔPJ  = -ρaΔV = - (900 kg/m3)(1291 m/s)(-2.04 m/s) 
= 2,367 kPa (343 psi)     (7) 

Note that this is the pressure increase due to an instantaneous 
velocity decrease at a downstream valve. To obtain the peak pressure at 
the valve, the pressure change must be added to the pre-existing, steady-
state, static pressure. 

Exploring Joukowsky Equation Limitations 
To understand the conditions when Eq. 3 can be exceeded, test or 

field data is referenced and is reinforced with analytical explanations and 
solutions when available. Finally, numerical simulations are used to 
explore different conditions. 

The numerical simulation tool used in this study is referenced in 
Ghidaoui et al. [2] and is commercially available (see Applied Flow 
Technology [11]). This software uses the widely accepted Method of 
Characteristics (MOC). It includes both the Discrete Vapor Cavity Model 
(DVCM) and the Discrete Gas Cavity Model (DGCM) for modeling 
transient cavitation and liquid column separation. For more information 
on the DVCM and DGCM, see Bergant et al. [1] and Wylie and Streeter 
[4]. Considerations of frequency-dependent friction and damping due to 
fluid-structure interaction (FSI) are not included in the numerical 
simulations.  

Three applications where Eq. 3 may not be conservative are: 
1. Transient cavitation and liquid column separation
2. Line pack
3. Piping system reflections (networks, components, area

changes and surge suppression devices)

TRANSIENT CAVITATION AND LIQUID COLUMN 
SEPARATION 

When a negative transient pressure wave reduces the local pressure 
in the piping system to the vapor pressure of the liquid, vapor is 
generated. The terminology covering this area is not completely 
consistent in the literature. Liquid column separation can be considered 
to exist when the vapor volume is such that it encompasses the entire 
cross section of the pipe. Hence, the continuous “column” of liquid is no 
longer intact and it separates.  

A more modest situation occurs when the vapor is either smaller in 
volume and/or distributes itself along a length of pipe such that the liquid 
stays more or less intact. A bubbly portion of the liquid in the piping 
exists but may not encompass the entire pipe cross section. 

It is not the purpose of this paper to explain the details of this 
complex phenomenon. Consult Bergant et al. [1] for more information 
and references on this important aspect of water hammer. For the 
purposes of this paper we will refer to this entire situation as transient 
cavitation. From an analytical point of view, it is well known that 
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Figure 1:  Example 2 - Experimental and numerical predictions of pressures during transient cavitation, compared to the maximum 

predicted Joukowsky pressure (Eq. 1) 
 

predicting water hammer behavior when transient cavitation is occurring, 
or has recently occurred, is extremely difficult. The examples presented 
here demonstrate this point. 

Bergant et al. [1] reported that Joukowsky himself was “the first to 
observe and understand column separation”. When transient cavitation 
occurs, the normal mechanism of water hammer wave propagation is 
disrupted. It is possible for liquid velocities to become larger than the 
original velocity, and the wave reflection processes in the liquid phase 
(Wiley and Streeter [4] and Leishear [6]) become exceedingly more 
complex. In short, when a cavity collapses, the pressure increase can be 
much higher than Eq. 3 predicts. 

 
Example 2: Vapor Collapse 

Martin ([12], p. 86, Fig. 6, x/L = 1) presents experimental evidence 
of pressures rising above those predicted by Eq. 1 following transient 
cavitation. Fig. 1 shows Martin’s data plotted against a numerical 
simulation that used the DGCM in Applied Flow Technology [11]. The 
simulation in Fig. 1 accounted for the varying supply pressure as reported 
by Bergant et al. [1, Fig. 4]. The Eq. 1 pressure rise is predicted to be 104 
m (340 ft) of water resulting in a maximum pressure of 171 m (560 ft) 
near 0.1 seconds. Cavitation begins at this location near 0.3 seconds. 
Both experiment and simulation in Fig. 1 show a peak pressure of about 
235 m (769 ft) near 0.6 seconds. A simulation using constant supply 
pressure (not shown) produces similar results to Fig. 1. This data 
indicates pressures can exceed Eq. 1 when transient cavitation occurs.  

The simulation assumed a wavespeed of 1,230 m/s (4,035 ft/s), a 
Darcy friction factor of 0.031 and used 12 computing sections. The valve 
was modeled as a linear decrease in flow over 25 ms. The maximum 
vapor size was predicted to be 1.6 cm3 (0.27% of the computing volume).  
 
Practical Vapor Collapse Advice for Engineers 

Check the results to determine if the negative pressure from Eq. 3 
subtracted from the steady-state operating pressure drops below the 
vapor pressure. This occurs either downstream of a valve immediately 
after closure or upstream of the valve after the wave reflection and the 
negative wave arrives. If so, then Eq. 3 may not yield a worst case, 
conservative, maximum pressure. A more detailed numerical simulation 
should be considered. Fig. 2 helps understand this statement. In Fig. 2 at 
left, the sum of the operating pressure and the negative Joukowsky Eq. 3 
is above the vapor pressure and cavitation is not possible. In Fig. 2 at 
right, the sum of the operating pressure and the negative Joukowsky Eq. 
3 is below the vapor pressure and cavitation is then possible.  

Changes in elevation also lead to conditions that cause the formation 
of vapor pockets and vapor collapse. Note that cavitation may occur at 
high points in the piping, where flow separation occurs. 

 
Figure 2: Diagram to help determine the possibility of 

transient cavitation 
 
LINE PACK  

The phenomenon of line pack is another complexity that occurs 
during fluid transients. It is not the purpose of this paper to explore line 
pack in full detail. Liou [13] offers a detailed discussion of line pack and 
a new, powerful method for predicting the peak pressure resulting from 
a combination of line pack and Eq. 1 (often called the “potential surge” 
in the context of line pack). Additional discussion can also be found in 
Thorley [3], Wylie and Streeter [4], Chaudhry [7] and Kaplan et al. [14]. 

Liou’s introductory paragraph [13] offers an excellent summary of 
line pack: 

“In pipeline transients, frictional resistance to flow 
generates line packing, which is a sustained pressure 
increase in the pipeline behind the water hammer 
wave front after the closure of a discharge valve. 
This phenomenon is of interest to cross-country oil 
pipelines and long water transmission mains because 
the sustained pressure increase can be very 
significant relative to the initial sudden pressure 
increase by water hammer and can result in 
unacceptable overpressures”. 

Line pack is most dramatic when frictional pressure drop is 
significant. As Liou suggests, line pack is often associated with highly 
viscous fluids (e.g., oil) and longer pipelines even with relatively low 
viscosity fluid such as water. But even on lower frictional pressure drop 
systems the line pack phenomenon can be observed.  
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Pipeline hydraulic engineers familiar with water hammer typically 
have a strong appreciation for line pack. On the other hand, plant system 
engineers who deal with smaller scale piping systems often do not have 
the same appreciation. 

Interestingly, few cases for field measurements of line pack are 
found in the literature. Numerical predictions are easier to find (as 
referenced in the section introduction above). Even with limited field 
measurements, line packing is common knowledge among fluid transient 
engineers. 

Along with Liou’s explanation [13], quoted above, he goes deeper 
into the basic mechanism that causes line pack. Specifically, when a 
valve is instantly closed, and the first water hammer wave propagates 
inside the pipe, it fails to bring the fluid to a zero velocity throughout the 
entire pipe except right at the closed valve. The fluid behind the wave 
thus still has forward velocity towards the valve and that causes the 
pressure at the valve to slowly increase above the Joukowsky pressure 
(Eq. 1). This pressure increase behind the wave is the phenomenon 
known as line pack. 
 
Example 3: Line Pack 

To better understand line pack, consider the horizontal pipe shown 
in Fig. 3, using the characteristics listed in Table 1. This example expands 
on Example 1. Where the simplified Example 1 above neglected friction 
effects, this example considers the Darcy (Moody) friction factor, f, with 
respect to pressure changes. Fig. 4 shows the simulation results for 500 
seconds. The piping was modeled using 100 sections, and the valve was 
modeled as a fixed flow rate which drops to zero instantly. 

 

 
Figure 3:  Example 3 – Horizontal pipe system description 

 
Table 1:  Input data for Example 3, assuming instantaneous 

valve closure 
L 50 km (31.1 miles) 
D 0.5 m (1.64 ft) 
a 1,291 m/s (4,236 ft/s) 
f 0.018 
Q 0.4 m3/s (14.1 ft3/s), 1,440 m3/hr (6,340 gpm) 
ΔV -2.04 m/s (-6.68 ft/s) 
Pin 10,000 kPa (1,450 psi), fixed 
Pvalve 6,638 kPa (962.8 psi), upstream initial pressure 
ΔPpipe 3,362 kPa (487.6 psi), initial pipe pressure drop 
ρ 900 kg/m3 (56.2 lbm/ft3) 

 
Consider what the line pressure will be once the valve has closed 

and all transients have steadied out. The answer is trivial: the line 
pressure will be 10,000 kPa (1,450 psi) at all points based on the 
upstream pressure and no flow or elevation change. How much did the 
final pressure increase at the valve? The pressure increased 3,362 kPa 
(6,638 to 10,000) or 487 psi (962.8 to 1,450). This pressure increase does 
not depend on water hammer and is a result of the recovery of pressure 
at the valve previously lost to friction when the pipeline was flowing. We 
will therefore call this the “friction recovery pressure”, ΔPfr. 

Eq. 3 predicts the maximum Joukowsky pressure increase at the 
valve due to water hammer (ΔPJ) is 2,367 kPa (343 psi). See Example 1. 
And that is where many engineers stop when evaluating water hammer. 
But that neglects friction recovery pressure. To get a maximum possible 
pressure increase, one needs to account for the recovery of pressure from 
friction. One quick estimate is to add the friction recovery pressure to the 
Eq. 3 pressure, since both contribute to the pressure increase in the 

piping. Adding the two together obtains a maximum possible pressure 
increase of: 

 
      ΔPmax = ΔPJ + ΔPfr = 5,729 kPa (831 psi)               (8) 
 

This estimate provides a very conservative answer, where the 
pressures to be added occur at two different times: one time occurs when 
the valve closes; the other time occurs later when the system comes to 
equilibrium.  

Note two conclusions from this analysis. First, the friction recovery 
pressure is different at every point along the pipeline and obtains a 
maximum at the valve since the valve is the furthest point along the 
pipeline and thus experiences the most friction pressure drop. Second, 
the friction recovery pressure is a quick and conservative estimate of the 
maximum pressure. In reality, by the time the friction pressure recovery 
occurs, the Eq. 3 pressure spike has attenuated (see Leslie and Tijsseling 
[15] for more on friction and attenuation). The new method discussed by 
Liou [13] endeavors to predict the sum of the friction recovery pressure 
and the attenuated Eq. 3 spike. It can be shown that Liou’s method 
predicts the following: 

 
                   ΔPmax = 5,311 kPa (770 psi)                (9) 
 

This value is lower than the quick and conservative method of Eq. 
8. How does it compare to an actual numerical simulation? Figs. 4 and 5 
show the answer to that. The Liou method predicts the peak pressure 
exceedingly well.  

Fig. 4 shows numerical analysis results for the first 500 seconds, 
and also shows the predicted pressure increase from the Joukowsky 
equation (Eq. 3). Fig. 5 shows these same numerical analysis results for 
the first 200 seconds. Additionally, shown in Fig. 5 is the sudden pressure 
increase expressed by the Joukowsky equation (Eq. 3), the pressure 
increases from line pack, the Liou [13] method for calculating pressure 
increases, and the friction recovery pressure increase. Note that the sum 
of the Eq. 3 pressure from the Joukowsky equation and the friction 
recovery pressure is conservatively higher than the numerical simulation 
or Liou’s pressure prediction. Finally, it is clear from Figs. 4 and 5 that 
the actual pressure increase exceeds that predicted from Eq. 3. 

 
Further Comments on Line Pack 

As seen in Fig. 5, the maximum pressure using the friction recovery 
pressure (12,367 kPa, 1,794 psi) is conservatively higher than the actual 
maximum (11,967 kPa, 1,763 psi) and the Liou method (11,949 kPa, 
1,733 psi). Note that this system is based on oil, a relatively high 
viscosity fluid. For practical applications, use of the friction recovery 
pressure results in conservative maximum pressures.  

As mentioned earlier, published experimental/field test evidence for 
line pack is difficult to find. One of the signs of line pack is the increasing 
pressure right after the valve has instantly closed. This phenomenon can 
be observed in Figs. 4 and 5 after valve closure until the pressure peak at 
about 75 seconds. Interestingly, Fig. 1 is redrawn as Fig. 6 using a 
different scale for emphasis where line pack is clearly identified. Note 
that the friction recovery pressure is about 5 m (16 ft) of water in Fig. 6. 
Martin’s data uses water and a relatively short pipe (102 m) showing that 
line pack also happens in short, low viscosity systems.  

For completeness, the Fig. 1 simulation results were compared with 
and without the varying tank pressure reported by Bergant et al. [1, Fig. 
4]. The line pack in the simulated results was very similar between the 
two cases. This further confirms that the 5 m (16 ft) pressure rise above 
Eq. 1 in Fig. 6 is a result of line pack.  

 
Practical Line Pack Advice for Engineers 

We have shown that Eq. 3 does not predict maximum pressures 
when line pack occurs. For any system with appreciable frictional 
pressure drop, the line pack effect will be pronounced. A quick and 
conservative way to estimate maximum line pressures is to add the Eq. 3 
Joukowsky pressure increase to the friction recovery pressure. 
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Figure 4:  Example 3 - Predicted pressure transient at the valve for the system shown in Fig. 3 for 500 s 

 
 

 
 

Figure 5:   Example 3 – Predicted pressure transient at the valve from the system shown in Fig. 3 for 200 s with additional details 
on the various pressure rise estimation methods 
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Figure 6: Example 2 - Evidence of line pack effect in experimental results (Martin [12]) 

  
PIPING SYSTEM PRESSURE WAVE REFLECTIONS 

Water hammer wave reflections can occur for many reasons 
including: 

• Branching / tees 
• Piping diameter changes 
• Valves and fittings which result in any diameter change 

and/or introduce a local pressure drop 
• Dead ends 
• Pumps 
• Tanks or reservoirs 
• Accumulators 
• Blockages in pipes 
• Leaks in pipes 
• Vibrating elbows 
• Entrapped air pockets 
• Wave speed changes due to piping material or wall thickness 

changes 
• Frictional characteristics changes 

 
In all of these cases, an abrupt change in the wave propagation 

occurs at a transition. In any of these cases where a transition of material 
or structural characteristics occurs, both a reflected wave and a 
transmitted wave will also occur at that transition (Leishear [6]).  

All following examples use Applied Flow Technology [11] and are 
based on water. 
 
Example 4: Reflections in Piping Networks 

In the past, some believed that piping networks always reduced the 
maximum pressure of water hammer waves (Karney and McInnis [16]). 
While this may be true in some cases, Karney and McInnis call this belief 
“transient folklore”. They considered this comparative example for two 
piping systems, as described in Figs. 7 and 8. An instant valve closure in 
the straight pipe system of Fig. 7 yields an initial pressure increase as 
predicted by Eq. 3. What about the networked system in Fig. 8 with 
instant valve closure?  

Fig. 9 shows simulation results which, as expected, yield essentially 
the same results as Karney and McInnis [16]. Note how network system 
pressures exceed straight system pressures in Fig. 9, where results are 

presented for straight and networked piping systems for instant valve 
closures. Clearly, the networked system in Fig. 8 yields higher pressures 
than the straight system of Fig. 7. These results show that, in some cases, 
networked systems yield pressure increases significantly greater than the 
maximum Joukowsky prediction (Eq. 3).   

Eq. 3 obtains a pressure increase of 130 m (427 ft) of water for this 
system. This result is also shown in Fig. 9. The peak pressure of 191 m 
(627 ft) is also shown. This pressure increase is 47% higher than the 
increase predicted from the Joukowsky equation. 

Note, to achieve the results shown in Fig. 9, a valve Cv of 1,390 was 
used in the system from Fig. 7, and a Cv of 1,384 was used in the system 
from Fig. 8. The valve Cv’s need to be different to match the head loss 
values in Figs. 7 and 8 as well as to maintain the specified flow rates. 
The system was modeled with 25 sections in the shortest pipe. 

  

 
Figure 7:  Example 4 – Straight piping system  

 

 
Figure 8:  Example 4 - Networked piping system 
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Figure 9:  Example 4 - Simulation results using [11] for Figs. 7 and 8 at the valve for straight and networked systems (adapted 

from Karney and McInnis [16]) 
 

Example 5: Reflections From Diameter Changes 
This example is the same as Fig. 7 except that the diameter of Pipe 

2 has been increased to 1.17 m and the valve Cv has been changed to 
1,381 to match the same overall flowrate as Fig. 7. The valve is again 
closed instantly. Note that the diameter of 1.17 m was chosen to give the 
same effective flow area as the sum of the areas from Pipes 2 and 4 from 
Fig. 8. See system in Fig. 10. 

Fig. 12 shows the results. Similar to Example 4, Eq. 3 is exceeded. 
Also, the close similarity of results between Figs. 9 and 12 leads one to 
ask whether the pressures in Example 4 are more a result of the pipe 
network as discussed in [16] or the effective area change at the branch 
closest to the valve (Fig. 8). Having the same wave speed in Fig. 8 Pipes 
2 and 4 contribute to this result. Different wave speeds in these pipes 
would yield a more complicated transient than shown in Fig. 9. This 
system is modeled with 25 sections in the shortest pipe. 

 

 
Figure 10:  Example 5 - Piping system with diameter change 
 
Example 6: Reflections From Branch With Dead End 

This example is the same as Fig. 7 except that there is a branch with 
a dead end (see Fig. 11). The valve is again closed instantly. 

Fig. 13 shows results. Similar to previous examples, Eq. 3 is 
exceeded. This system is modeled with 1 section in Pipe 4 (Fig. 11) and 
a minimum of 25 sections in all other pipes. 
 
Example 7: Reflections From Gas Accumulator 

This example is the same as Fig. 7 except that there is an inline 
accumulator 40 meters from the valve. The initial gas volume was 20,000 
liters (5,280 gal) and a polytropic constant of 1.2. See Fig. 14. The valve 
is again closed instantly. This system is modeled with 1 section in Pipe 
3 (Fig. 14) and a minimum of 25 sections in all other pipes. 

Fig. 16 shows the results. Similar to previous examples, the 
predicted maximum pressure from Eq. 3 is exceeded. 

 

 
Figure 11:  Example 6 - Piping system with a branch and dead 

end 
 

Further Comments on Systems With Wave Reflections 
Real systems often have many pressure wave reflection points 

which lead to complicated wave propagation patterns. Fig. 15 shows 
simulation results at various times for the Fig. 10 system, with wave 
speed in Pipe 2 changed from 1,000 to 900 m/s. It is clear that the 
pressure and flow distribution becomes increasingly more complicated 
as time progresses even though the initial transient began as a single 
wave due to instant valve closure. This system is modeled with a 
minimum of 500 sections in each pipe in order to show a steep wave front 
in Fig. 15. The wave speed of 900 m/s in Pipe 2 was chosen to introduce 
asymmetry in the wave reflection times in Pipe 1 compared to Pipes 2 
and 3 when combined. 

 
Practical Pipe Reflection Advice for Engineers 

Conclusively, Eq. 3 does not predict maximum pressures when 
certain pipe reflections occur. It is much harder to estimate the magnitude 
of pressure surge at a reflection as there are various types of reflections, 
as shown in Examples 4-7. Consult Parmakian [17] for analytical 
approximations for water hammer at reflections. Strongly consider using 
numerical methods. 
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Figure 12: Example 5 - Simulation results for Figs. 7 and 10 at the valve for straight pipe and pipe with diameter change systems. 
 

 
Figure 13: Example 6 - Simulation results for Figs. 7 and 11 at the valve for straight pipe and branch with dead end systems. 

  

 
Figure 14: Example 7 - Piping system with a gas accumulator 
 

Dynamic Stresses 
Although outside the scope of this work, dynamic stresses merit 

further comment. When pressures are suddenly applied due to water 
hammer, the expected static stress is multiplied by a dynamic load factor 
(DLF) to obtain the actual dynamic stress exerted on the piping. For 
elastic hoop stresses, DLF < 4 when a steep fronted water hammer wave 
travels along the bore of a pipe (Leishear [6]).  For elastic bending 
stresses, DLF < 2 for a single elbow, but the DLF can be increased up to 
DLF < 4 for tight U-bend axial stresses and Z-bend bending stresses. As 
the pressure is more gradually applied, the DLF approaches 1 for hoop 
stresses and bending stresses, which is the case for line pack. 
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Figure 15: Simulation results at various simulation times for the Fig. 10 system (with wave speed changed in Pipe 2 to 900 m/s) 

showing pressure and flow rate profiles and how wave patterns become more complicated over time 
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Figure 16: Example 7 - Simulation results for Figs. 7 and 14 at the valve for straight pipe and gas accumulator systems

 
CONCLUSIONS 

The Joukowsky equation should be used judiciously in piping 
systems for several conditions: 

1. Piping systems that contain tees 
2. Piping systems that contain changes in pipe diameter, pipe 

material, pipe wall thickness, or frictional coefficients 
3. Piping systems where increased pressures due to line pack may 

be an issue (examples are long pipelines and/or higher 
viscosity fluids) 

4. Systems where pressures drop to the vapor pressure of the 
liquid in the piping system 

All in all, when these complex conditions are present in piping 
systems, numerical methods are preferred to the simplified Joukowsky 
equation to prevent a misunderstanding of system performance. 
Significant mistakes can be made by using the simplified Joukowsky 
equation without a more complete awareness of its limitations. 
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