Procedure for Flow Induced Vibration Calculations

Overview

This guide provides instructions on how to use the calculation spreadsheet created based on the Energy Institute's "Guidelines for the Avoidance of Vibration Induced Fatigue Failure in Process Pipework," which provide a procedure to calculate a likelihood of failure (LOF) for different vibration based on different vibration mechanisms that can be used to adjust the system design to prevent fatigue.

Background

There are a variety of piping vibration sources which engineers should analyze in their systems. AFT Impulse PFA can be used to analyze acoustical excitation and pulsation caused by reciprocating pumps. Base AFT Impulse can also be used to address cavitation and surge issues, which can contribute to vibration in the system. AFT xStream PFA is intended to address acoustical excitation and vibration caused by reciprocating compressors. AFT xStream may also be able to help troubleshoot rotating stall in centrifugal compressors, which can be another source of vibration.

Beyond the vibration sources described above, this spreadsheet is intended to address the following vibration sources:

- Flow Induced Vibration (FIV)
 - Occurs in both compressible and incompressible flow. Excitation caused by turbulence in the flow, which is primarily experienced at discontinuities like partially closed valves, bends, tees, reducers, etc. Generally, this type of excitation is concentrated at low frequencies (< 100 Hz) and can lead to visible vibrations of the piping and pipe supports.
- Pulsation: Flow Induced Excitation (FIP)
 - In gas systems flow past a branch with a dead end, or flow around a component inserted in the flow stream can cause vortices to form. On their own they are typically not damaging, but if they coincide with an acoustic or structural natural frequency, then high levels of pulsation can occur. Only the mechanism for flow past dead ends is covered by the El guidelines.
- High Frequency Acoustic Excitation (AIV)
 - In gas systems significant pressure loss sources such as control valves, relief valves, etc. can generate high frequency acoustic energy which is damaging due to the noise output as well as the vibration of the pipe walls. This can affect pipe supports and connections as well. Typically, frequencies are in the range of 500 – 2000 Hz.

Flow Induced Vibration (FIV)

Reference: Pages 48-53, Section T2.2, Flowchart T2-1

Purpose: Determine main line LOF based on turbulence in main line

Input Sources/Descriptions:

Inputs	Source	Description
L,span	User Input	Max span length between supports
т	User Input	Thickness of pipe wall
fn (adv. only)	User Input	Structural natural frequencies
D,int	AFT Export	Internal pipe diameter
ρ	AFT Export	Fluid density (static)
v	AFT Export	Fluid velocity
μ (gas only)	AFT Export	Dynamic viscosity

Procedure:

- 1. Run the model to get results.
- 2. Determine the pipe to be analyzed for Flow Induced Turbulence.
- 3. From the Workspace, click the Excel Export Manager button on the toolbar, then click Open.

4. The blank Excel Export Manager window appears.

Exce	l Export	t Man	ager																
	*ew New	1		Duplicate	De	klete	Ø Delete All											Radva Adva	inced
	Apply Expo	/ to ort	Export Type	Source	Object	Parameter	Units	Excel Sheet	Excel Starting Cell	Excel Ending Cell	Header	Units	Add Excel Comments	Show Example					
4	NI N	lone	Invert	Parent		👃 🔭 İtem is n	ot available i	n current so	enario	-	-			-	-		-	-	
		0 6	FOR			R S T V V	w x y z	AA 49 40	10 AS AF AG			4 AN AQ	AP AQ AP AQ	AT AN AV AV	AX AY A2	BA BB B	0 80 86 87	80 84 8 8	
1	•																		
4																			<u></u>]
8																			
8																			
10																			II
12																			
15																			
144	4 F		Shee	:t1 +								<							
Б	cel Expo	ort Loo	ation																
	Create	e New	Workbo	ook		_													
0) Previo	ously (Saved W	orkbook	elect Workbo	ok		_											
) Currer	ntly O	bened W	orkbook				\sim											
				Clear Sheet	Data														
	Export	t Now		Automatically	y Export After	Running Model							~	ОК	E	Ca	ncel	孕 не	elp

- 5. With the Excel Export Manager open, click **New** to add a row, then input the following into rows using the images below the table as a guide based on the fluid type.
 - P# (Pipe) shall be the same pipe for all rows.
 - Units shall be the same as shown in the table

Object	Parameter	Units	Excel Sheet	Excel Starting Cell	Header	Units
P# (Pipe)	Diameter Hydraulic	mm	FIV Calcs Liquid	C13		
P# (Pipe)	Density of Fluid Average	kg/m3	FIV Calcs Liquid	C14		
P# (Pipe)	Velocity	meters/sec	FIV Calcs Liquid	C15		

a. For incompressible fluids:

b. For compressible fluids:

Object	Parameter	Units	Excel Sheet	Excel Starting Cell	Header	Units
P# (Pipe)	Diameter Hydraulic	mm	FIV Calcs Gas	C13		
P# (Pipe)	Density Static Inlet	kg/m3	FIV Calcs Gas	C14		
P# (Pipe)	Velocity Inlet	meters/sec	FIV Calcs Gas	C15		
P# (Pipe)	Viscosity Inlet	Pa-sec	FIV Calcs Gas	C16		

- 6. At the bottom, for Excel Export Location, click the radio button for **Previously Saved Workbook.**
- 7. Click the **Select Workbook** button, navigate to the **Flow Induced Vibration Calculation.xlsx** file then click **Open.**
- 8. The bottom of the Excel Export Manager window should look like the following image:

Excel Export Location	
Previously Saved Workbook Select Workbook Flow Induced Vibration Calculations.xlsx	
Currently Opened Warkbook	
Export Now Clear Sheet Data	✓ OK Cancel P Help

9. The Excel Export Manager window should look like the following:

a. For incompressible fluids:

Exc	el Exp	oort M	anager																			
	, N	¥∰ New		- Duplic	s cate				•	Delete All											हि _{ंग} Adva	anced
	App Exp	ply to port	Export Type		Sou	ce		Objec	t	Parameter		Units		Excel Sheet		Excel Starting Cell	Excel Ending Cell	Header	Units	Add Excel Comments	Show Example	
1		Z :	Single Value	\sim	Pipe	\sim	P1	(Pipe)	\sim	Diameter Hydraulic	\sim	mm	\sim	FIV Calcs Liquid	\sim	C13	C13					
2	. 6		Single Value	\sim	Pipe	\sim	P1	(Pipe)	\sim	Density of Fluid Average	\sim	kg/m3	\sim	FIV Calcs Liquid	\sim	C14	C14					
3	5	~	Single Value	\sim	Pipe	\sim	P1	(Pipe)	\sim	Velocity	\sim	meters/sec	\sim	FIV Calcs Liquid	\sim	C15	C15					

b. For compressible fluids:

Б	cel l	Export Ma	inager																			
[* New		Duplic	ate		× Delete		Delete All												E,	Advanced
		Apply to Export	Ехро Туре	rt e	Source	e	Object		Parameter		Units			Excel Sheet		Excel Starting Cell	Excel Ending Cell	Header	Units	Add Excel Comments	Show Example	
	1		Single Valu	ue 🗸	Pipe	\sim	P1 (Pipe)	\sim	Diameter Hydraulic	\sim	mm	\sim	FI	/ Calcs Gas	\sim	C13	C13					
1 L	2	\checkmark	Single Valu	ue 🗸	Pipe	\sim	P1 (Pipe)	\sim	Density Static Inlet	\sim	kg/m3	\sim	FI	/ Calcs Gas	\sim	C14	C14					
	3	\checkmark	Single Valu	ue 🗸	Pipe	\sim	P1 (Pipe)	\sim	Velocity Inlet	\sim	meters/sec	\sim	FI	/ Calcs Gas	\sim	C15	C15					
	4	\checkmark	Single Valu	ue 🗸	Pipe	\sim	P1 (Pipe)	\sim	Viscosity Inlet	\sim	Pa-sec	\sim	FI	/ Calcs Gas	\sim	C16	C16					

- 10. Double check that the same pipe is selected for all rows, the Parameters, Units, Excel Sheet, Excel Starting Cells, the Header and Units checkboxes all match the above window, and the Flow Induced Vibration Calculation.xlsx is the workbook for the Previously Saved Workbook.
- 11. Once all inputs are confirmed to match the above window, click **Export Now** at the bottom left:

Excel Export Location	
Previously Saved Workbook Select Workbook Flow Induced Vibration Calculations.xlsx	
O Currently Opened Workbook	
Export Now Clear Sheet Data Clear Sheet Data Automatically Export After Running Model	V OK Cancel P Help

12. AFT Fathom will export the parameters to the spreadsheet which has the prebuilt calculations.

AutoSa	ave 🚥 🗄 り~				FIV Calcs I				₽ Searce	h			
File	Home Insert	Draw Page L	ayout Formula	s Data	Review	View	Help						
K22	• : × ·	√ f _x											
A 4	В	с	D	Е	F	G	н	I.	J	К	L	м	N
1													
2	***See Flow Inc	luced Turbulence	Vibrations (FIV) p	rocedure	for instructi	ions on ho	w to use tl	his spreadsheet*	**				
3													
4	The equations a	nd methodology	used here are fro	m "Guideli	ines for the	Avoidance	e of Vibrat	ion Induced Fatig	gue Failure in Pro	cess Pipewo	ork" Section	T 2.2.	
5	This workbook i	s intended for us	e by authorized us	ers of the	above guid	elines. See	e the El we	ebsite for more in	nformation or to	purchase the	e guideline:	5:	
6	https://publishi	ng.energyinst.or	g/topics/asset-int	egrity/gui	delines-for-	the-avoid	ance-of-vi	bration-induced	-fatigue-failure-i	n-process-pi	pework		
7													
8													
9		Inputs			Key								
10	L,span	5	m		User Input								
11	т	5.5	mm		AFT Export								
12	fn (adv. only)	1.0	Hz		Result								
13	D,int	77.93	mm										
14	ρ	998	kg/m³										
15	v	2.27	m/s										
16													
17		Output											
18	LOF	0.267											
19													

- 13. With the values from AFT Fathom, enter the user specified values for the remaining inputs:
 - a. L,span in m
 - b. T in mm
 - c. fn (advanced only)
 - For the highest accuracy, the natural frequency should be measured for the system.
 - If the natural frequency is not known the typical fundamental natural frequency for the system based on the support type is given in Table T2-1 on page 50 of the EI Guidelines and is shown in the spreadsheet in the "Determining Support Type" table in cells F28-F31.
- 14. The LOF is calculated and shown in cell C19 in the output section.
- 15. Use the EI Guidelines to determine appropriate actions based on displayed LOF.

Pulsation: Flow Induced Excitation (FIP)

Reference: Pages 57-58, Section T2.6, Flowchart T2-4

Purpose: Determine LOF for main line based on deadleg branch calculations

Input Sources/Descriptions:

Inputs	Source	Description
С	AFT Export	Sonic velocity at branching point
d,int	AFT Export	Internal diameter branch
D,int	AFT Export	Internal diameter main line
L,branch	AFT Export	Length branch
Re	AFT Export	Re at branching point
v	AFT Export	Velocity at branching point
ρ	AFT Export	Gas density in main line (static)

Procedure:

- 1. Run the model to get results.
- 2. Determine the dead-leg branch to be analyzed for Flow Induced Excitation.
- 3. From the Workspace, click the Excel Export Manager button on the toolbar, then click Open.

4. The blank Excel Export Manager window appears.

E	xcel E	xport Ma	nager																
		New New		Duplicate	De	klete	Ø Delete All											E A	dvanced
		Apply to Export	Export Type	Source	Object	Parameter	Units	Excel Sheet	Excel Starting Cell	Excel Ending Cell	Header	Units	Add Excel Comments	Show Example					
	All	None	Invert	Parent		J. tem is no	ot available ir	n current so	enario										
	4 4 1		F Q H	1 J K L N			w x y z	AA AB AC	AD AS AF AC	AH A A		AN AO	AP AQ AR AQ	AT AU AV AV	AX AY AZ	DA 55 D	2 80 66 67	83 84 8	8) 8K 8.
	-																		Î î
	5 6 7																		
	a 9																		
	12																		
	4 5 6																		
	He -	(⊧ ⊧ Evport la	Sheet	1 +							Î	•							→ ↓
		Create Ne	w Workbo	ok															
	0	Previously	Saved Wo	orkbook Se	ect Workbo	ok													
		Currently C	Opened Wo	orkbook				\sim											
		Export Nov	, _	Clear Sheet D	lata									1 OK					
				Automatically	Export After	Running Model							V	OK		Car	ncel	φ	Help

5. With the Excel Export Manager open, click **New** to add a row, then input the following into seven rows using the image below the table as a guide for pipes:

Object	Parameter	Units	Excel Sheet	Excel Starting Cell	Header	Units
Dead Leg Pipe	Diameter Hydraulic	mm	FIP Calcs Gas	B22	N	
Main Line In	Diameter Hydraulic	mm	FIP Calcs Gas	D22		
Dead Leg Pipe	Length	meters	FIP Calcs Gas	E22		
Main Line In	Velocity Sonic Outlet	meters/sec	FIP Calcs Gas	F22		
Main Line In	Reynolds Number Outlet	None	FIP Calcs Gas	G22		
Main Line In	Velocity Outlet	meters/sec	FIP Calcs Gas	H22		
Main Line In	Density Static Outlet	kg/m3	FIP Calcs Gas	122		

- 6. At the bottom, for Excel Export Location, click the radio button for **Previously Saved Workbook**.
- 7. Click the Select Workbook button, navigate to the Flow Induced Vibration Calculation.xlsx file.
- 8. The Excel Export Manager window should look like the following:

Ex	xcel Export Manager																		
	New Duplicate											Advanced							
	Apply to Export	Export Type	Export Source Type		e	Object		Parameter		Units		Excel Sheet		Excel Starting Cell	Excel Ending Cell	Header	Units	Add Excel Comments	Show Example
		Single Value	\sim	Pipe	\sim	P8 (Dead Leg Pipe)	\sim	Diameter Hydraulic	\sim	mm	\sim	FIP Calcs Gas	~	B22	C22	\checkmark			
		Single Value	\sim	Pipe	\sim	P6 (Main Line In)	\sim	Diameter Hydraulic	\sim	mm	\sim	FIP Calcs Gas	~	D22	D22				
		Single Value	\sim	Pipe	\sim	P8 (Dead Leg Pipe)	\sim	Length	\sim	meters	\sim	FIP Calcs Gas	~	E22	E22				
4		Single Value	\sim	Pipe	\sim	P6 (Main Line In)	\sim	Velocity Sonic Outlet	\sim	meters/sec	\sim	FIP Calcs Gas	~	F22	F22				
		Single Value	\sim	Pipe	\sim	P6 (Main Line In)	\sim	Reynolds Number Outlet	\sim	None		FIP Calcs Gas	~	G22	G22				
(Single Value	\sim	Pipe	\sim	P6 (Main Line In)	\sim	Velocity Outlet	\sim	meters/sec	\sim	FIP Calcs Gas	~	H22	H22				
		Single Value	\sim	Pipe	\sim	P6 (Main Line In)	\sim	Density Static Outlet	\sim	kg/m3	\sim	FIP Calcs Gas	~	122	122				

9. Once all inputs are confirmed to match the above window, click **Export Now** at the bottom left.

Excel Export Location O Create New Workbook			
Previously Saved Workbook Select Workbook	kbook Flow Induced Vibration Calculations.xlsx		
O Currently Opened Workbook	\sim		
Export Now	ter Running Model	✓ OK Cancel ♀ Help	

File	Hor	me Insert Draw Page	Layout I	Formulas	Data	Review	View Help											
E33		\bullet : \times \checkmark f_x																
	Α	В	с	D	E	F	G	н	1	J	к	L	м	N	0	Р	Q	R
1																		
2		***See Pulsation: Flow Induced	Excitation ((FIP) proce	dure for inst	ructions or	n how to use th	nis spreads	heet***									
3																		
4		The equations and methodology	used here	are from '	'Guidelines f	or the Avo	idance of Vibra	ation Induc	ed Fatigue	e Failure in Pro	cess Pipewo	ork" Section T 2	.6.					
5		This workbook is intended for u	se by autho	orized user	s of the abov	e guidelin	es. See the El v	vebsite for	more info	ormation or to	purchase th	e guidelines:						
6		https://publishing.energyinst.o	rg/topics/a	sset-integ	rity/guidelin	es-for-the-	avoidance-of-	vibration-i	nduced-fa	tigue-failure-i	n-process-p	ipework						
7																		
8																		
9		LOF Main Branch		1														
10																		
11		Input Descriptions					Key											
12		c	Sonic velo	ocity at bra	nching point		From Arrow											
13		d,int	Internal d	liameter b	ranch		Result											
14		D,int	Internal d	liameter m	ain line													
15		L,branch	Length br	anch														
16		Re	Re at brar	nching poir	nt .													
17		v	Velocity a	at branchin	g point													
18		ρ	Gas densi	ity in main	line (static)													
19		Paul and		0.1-1	1. house also				-	11-10-1-1	4	11-1-1-12	C (D 4 (CC2)	64 (D - 14 (CC3)				105
20		Dead-end	a,int	D,int	L,branch	с (-	ке	V	ρ hadaa	a,int/D,int	a,crit	a,int < d,crit?	5 (Ke>1.6E/)	S1 (Ke<1.6E/)	5	FV	FS	LOF
21		DR (Dine) Hud Diameter	111M	154.051	m 0.1534	111/5	11 020 282	05.0016	Kg/m3	0.24	10.82	No	0.222	0.385	0.005	510.006	493.653	
22		Po (Pipe) nyd. Diameter	52.5018	154.051	0.1524	557.8094	11,020,382.	93.2916	5.6499	0.34	45.82	NO	0.332	0.285	0.285	516.020	403.033	1
23																		

10. AFT Arrow will export the parameters to the spreadsheet which has the prebuilt calculations.

- 11. Repeat the steps above for other branches by exporting the values to the next open row.
- 12. The LOF for each dead end will be calculated and shown in column R.
- 13. The LOF for the main branch will be equivalent to the highest branch LOF, shown in cell D9.
- 14. Use the EI Guidelines to determine appropriate actions based on displayed LOF.

High Frequency Acoustic Excitation (AIV)

Reference: Pages 59-62, Section T2.7, Flowcharts T2-5 and T2-6

Purpose: Determine the LOF in the main line based on high frequency sources (control valves, relief valves, etc)

Input description:

Inputs	Calculation	Source	Description			
Low Noise Trim	Sources	User Input	Reduction in sound level due to low noise valve trim			
Mw Sources		User Input	Molecular weight			
d,ext	Discontinuities	User Input	Branch external diameter			
L,dis	Discontinuities	User Input	Distance from source to discontinuity			
Piping Material Discontinuities		User Input	Y if piping material is duplex, N if not			
T Discontinui		User Input	Wall thickness main line			
Weldolet	Discontinuities	User Input	Y if discontinuity is weldolet type fitting or N if not			
P1	Sources	AFT Export	Pressure upstream of device			
P2	Sources	AFT Export	Pressure downstream of device			
Те	Sources	AFT Export	Upstream temperature			
W	Sources	AFT Export	Mass flowrate			
D,int	Discontinuities	AFT Export	Main line internal diameter			

Procedure:

- 1. Run the model to get results.
- 2. Determine the first source in the line to be analyzed for High Frequency Acoustic Excitation.
- 3. From the Workspace, click the Excel Export Manager button on the toolbar, then click Open.

4. The blank Excel Export Manager window appears.

Exc	el Ex	port Ma	anager																
		New		□ <u>a</u> Duplicate	De	klete	Delete All											ब्द्ध Advance	ced
		Apply to Export	Export Type	Source	Object	Parameter	Units	Excel Sheet	Excel Starting Cell	Excel Ending Cell	Header	Units	Add Excel Comments	Show Example					
	AI	None	Invert	Parent		1 tem is n	ot available i	n current s	cenario										
1	* *	0.0	5 F Q)		M N O P O	RSTUV	W X Y Z	AA AG AC	AD AE AF A	2 AH A A	I AK AL A	1 AN AO	AP AQ AR Ag	AT AU AV AN	AX AY AZ	SA SS SC S	20 96 9F 9	12 EH EI EJ	
4																			±11.
7																			
10 11 12 13																			ΞШ
14 15 16			ul Cha	41															
	Excel	Export L	ocation								1								
	•	Create Ne	ew Workb	ook															
		reviously Currently	y Saved V Opened V	Vorkbook S Vorkbook	elect Workbo	ok		\sim											
			_	Clear Sheet	Data														
	🖹 E	xport No	w [Automatically	y Export After	Running Model							~	ОК	×	Cance	el	Help	

5. With the Excel Export Manager open, click **New** to add a row, then input the following into four rows using the image below the table as a guide for pipes:

Source	Object	Parameter	Units	Excel Sheet	Excel Starting Cell
Junction	J#	Pressure Stagnation Inlet	Pascals	AIV Calcs	D18
Junction	J#	Pressure Stagnation Outlet	Pascals	AIV Calcs	E18
Pipe	Upstream Pipe of J#	Temperature Static Outlet	deg. K	AIV Calcs	F18
Junction	J#	Mass Flow Rate Through Junction	kg/sec	AIV Calcs	G18

- 6. Once all inputs are confirmed to match the above window, click **Export Now** at the bottom left.
- 7. AFT Arrow will export the parameters to the AIV Calcs sheet which has the prebuilt calculations.
- 8. In the sheet, manually enter the molecular weight and sonic choking status in cells D12 and D13 (skip if already entered).
- 9. Manually enter the junction number into column C.
- 10. Manually enter the sound level reduction Low Noise Trim (dB) parameter in column H if present.
- 11. Check the PWL value in column I:
 - a. If PWL is less than 155 dB, then the calculation is finished, check LOF in D9.
 - b. If PWL is greater than or equal to 155 dB, proceed to next step.

- 12. Find the next component in the line:
 - a. If the next component is an additional vibration source, repeat steps 5 through 11, but instead of using row 18 for columns D through G, use the next available row.
 - b. If the next component is a major vessel, then the calculation is finished, check LOF in D9.
 - c. If the next component is a discontinuity, proceed to next step.
- 13. In the spreadsheet, manually enter the inputs for the discontinuity in columns O through T.
- 14. For column N, export (or manually enter) Diameter Hydraulic in mm for the main line pipe upstream of the discontinuity. If this is the first discontinuity, export to N18, otherwise use the next available row in column N.
- 15. Check the PWL, disc value in column V:
 - a. If PWL, disc is less than 155 dB, then the calculation is finished, check LOF in D9.
 - b. If PWL, disc is greater than or equal to 155 dB, then repeat steps 12 through 15.