Investigation@f@n@nergy@fficient@ump@peed© Control@lgorithm@or@ontrolling@ump@evel@

Josh Dubey and Keith Goossen© Department@f@lectrical@nd@computer@ngineering© University@f@elaware© Newark,@E,@JSA© {dubej@udel.edu@goossen@udel.edu}

©

C

C

Abstract— This paper explores a new nonlinear control variable speed centrifugal pumps algorithm for at water/wastewater pump stations that leads to specific energy savings over the conventional linear one. The algorithm is useful for facilities where pump speed is a linear function of liquid level in order to transport fluid and smooth inflow peaks. A nonlinearity in the form of a quadratic term is added to the conventional linear one in order to produce efficiency gains, with a single parameter, curvature, varied to optimize energy savings. Results obtained by implementing the new algorithm on a pilotscale pump station show significant energy savings for fixed pump flow, with a parabolic correlation of specific energy savings versus curvature of the nonlinear quadratic determined. In addition, the cost of implementing this algorithm is minimal to none, so the work presented has major industrial potential.

Keywords— Variable Speed Drive, Centrifugal Pump, Nonlinear Level Control, Specific Energy, Energy Efficiency

I. INTRODUCTION©

Growing@wareness@f@ssues@uch@s@ustainable@nergy© use@nd@nergy@fficiency@have@rompted@nterest@n@nergy© saving@research@n@various@ndustrial@applications,@ncluding© pumping© systems.© Particularly,© Goldstein and Smith© [1]@eported@that@nearly@4%Cof@United@States@electricity@is© consumed@y@wastewater@reatment@lants@nd@lmost@0%@f© the@lectricity@n@he@wastewater@reatment@rocess@s@sed@y@ pumps.@Based@on@the@large@proportionCof@energy@used@for pumping,@nd@he@ast@umber@f@wastewater@lants@cross@he© country,@ust@Gmall@eduction@nergy@se@an@ead@o@arge© savings.@Here,@we@eport@@new@ontrol@lgorithm@ro@ump© pumping@ystems,@or@xample@n@vastewater@reatment@lants@ that@esults@n@p@@4%@avings@ompared@o@he@urrently© used@ontrol@lgorithms.©

In@eneral,@avings@n@ump@nergy@an@e@chieved@n@wo@ main@ways.COne@is@by@designing@more@efficient@pumps.@ Another,@liscussed@and@presented@here,@is@improving@pump@ performance@with@ffective@ontrol@trategies.@The@atter@ften@ times@nvolves@mploying@peed@ontrol@f@entrifugal@umps@ with@requency@egulated@y@ariable@peed@rives@VFD).@y@ regulating@ump@peed@according@o@rocess@arameters@uch@ as@tank@level,@pump@power@can@be@reduced@significantly@ compared@o@constant-speed@control.@However,@the@precise@ speed@control@algorithm@can@result@in@additional@savings.@ Roughly, @here@are@wo@algorithmic@approaches.@One@is@to@ attempt@o@naintain@peed@at@he@est-efficiency@oint@f@heC pump.@Bakman, Geverkov and Vodovozov [2]@discussed@a@ $method {\tt O} for {\tt O} single {\tt O} and {\tt O} multi-pump {\tt O} predictive {\tt O} control {\tt C} to {\tt O}$ maintain@operation@in@the@best-efficiency@region.@Tang and Zhang [3] Considered Condel Opredictive Control Coproach CoC improve@perational@fficiency@ncorporating@ariables@uch@s© TOU@ariff@and@water@demand.@hang,@Zhen@and@Kusiak [4]© developed@a@scheduling@model@to@generate@energy@optimal@ operational@schedules@for@wastewater@pump@systems.@As@ discussed@in@2-4],@most@of@the@pump@control@research@has@ focusedConOpredictiveCcontrolOstrategies,OwithOemphasisConO scheduling@variable@speed@centrifugal@pump@runs@based@on@ modelling@f@uture@nlet@low@ates.@While@hese@nethods@ave© potential@o@ring@bout@fficiency@ains@nd@etter@peration,© they@re@ften@ostly@nd@equire@arge@nvestments@n@xisting© pump@control@systems.@Therefore,@a@simpler@more@costeffective@control@strategy@that@results@in@energy@savings@is@ highly@esirable.@

Wastewater@reatment@lants@s@vell@s@ther@pplications© usually@nave@n@nput@ump@or@ollecting@nlet@lows.@SinceO the@nlet@lows@are@highly@variable,@t@s@ssential@o@have@anO effective@ontrol@trategy@hat@will@djust@outflow.@For@ump© stations@hat@employ@centrifugal@outflow@pumps@on@variable@ speed@drives,@wo@ypes@of@ontrol@trategies@xist.@Constant@ sump©level©control,©a©form©of©closed©loop©Proportional-Integral@(PI)@control@where@pump@frequency@is@adjusted@to@ maintain@he@ank@evel@t@@lesired@et@oint,@s@ne@nethod.C Variable@level@control,@a@soft@control@strategy@where@pump@ frequency@s@@inear@roportional@unction@f@ump@evel,@s© the@econd@nethod,@nd@as@he@dvantage@f@moothing@arge© inflow@eaks@ompared@o@onstant@evel@ontrol.@n@he@atter@ strategy.@pump@speed@increases@as@inlet@flow@increases@and@ level@ises,@with@no@ctual@evel@et@oint@and@rror@variable,@ untilCaCnewCequilibriumClevelCisCachieved.CCAllCreportedC algorithms[©] for[©] speed-level[©] control[©] show[©] pump[©] speed[©] increasing@linearly@with@level.@@In@this@paper,@a@nonlinear,@ quadratic @erm@s@dded@o@he@peed@ersus@evel@unction@nd@is©explored©experimentally©to©show©lower©energy©use© compared@to@the@inear-only@function.@Particularly,@using@a@ quadratic@negative-curvature@function,@a@4@%@reduction@in@ energy@s@ound@or@@articular@urvature.@While@he@xact© curvature© for© a© particular© sump© pumping© system© that©

minimizes@nergy@nay@depend@upon@he@articular@umping© system,@we@demonstrate@tere@that@dding@the@uadratic@thto@the@ algorithm@can@result@in@significant@energy@savings,@and@ potentially@reduce@overall@United@States@electricity@ consumption@n@the@rder@f@@enth@f@@tercent.@

II. THEORY®

A. Background on Pumping

 $Over@he@ast@ 0-15@ears,@here@has@een@@arge@ncrease@in@he@number@f@nunicipalities@dapting@variable@frequency@drives@VFDs)@o@heir@ump@tations.@Advantages@f@variable@speed@peration@nclude@he@otential@fdecreased@nergy@se,@more@lexibility@nd@he@bility@o@oft@tart@ump@notors@o@extend@ifetime.@While@ot@ll@ump@tations@re@ecessarily@tf@for@ariable@peed@peration,@articularly@hose@vho@re@olely@lift@tations@with@igh@tatic@head,@nany@ccrue@onsiderable@benefit@from@nstalling@dopting@hese@trives@re@direct@esult@fcthe@pump@affinityClaws.CEquationsC(1)CandC(2)CshowsCthe@relationships@etween@ump@peed@n_and@2.@$

$$\underbrace{\underbrace{\underline{Q}}_{1}}_{\underline{Q}_{2}} = \left(\underbrace{\underline{N}_{1}}_{N_{2}}\right)^{(1)}$$

$$\underbrace{\underline{Q}}_{2} = \left(\underbrace{\underline{N}_{1}}_{N_{2}}\right)^{(1)}$$

$$\underbrace{\underline{Q}}_{2} = \left(\underbrace{\underline{N}_{1}}_{N_{2}}\right)^{(1)}$$

$$\underbrace{\underline{Q}}_{2} = \left(\underbrace{\underline{N}_{1}}_{N_{2}}\right)^{(1)}$$

Based@n@he@ffinity@aws,@ust@@mall@eduction@n@ump@ speed@an@esult@n@@much@arger@eduction@n@ump@ower@ consumption.© However,© for© municipalities© determining© whether©to©incorporate©variable©speed©operation,©simply© looking@at@ower@onsumption@loes@not@show@he@complete© picture@egarding@nergy@avings@nd@otential@ayback.@The© most@seful@ariable,@nd@ne@hat@vill@e@eferred@o@n@his© paper,@s@pecific@nergy@E@vritten@s:©

 $(1) \quad (1) \quad (1)$

where E & CheQuit & CheQui

 Image: Construction of the construc

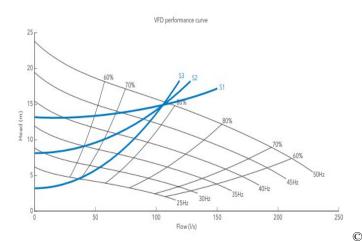
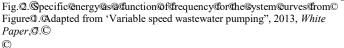



Fig.@.@An@rbitrary@ump@ystem@vith@hree@ystem@urves,@1,@2@nd@3.C Isoeffieincy@ines@rc@lotted@s@vell.@Adapted from 'Variable@peed© wastewater pumping'', 2013, *White Paper*,@.©

B. Variable Level Control

For©pump©stations©employing©the©technique©known©as© variable@evel@ontrol,@ump@peed@s@function@f@ump@evel© where@he@peed@ncreases@roportionally@vith@evel.@The@ump© speed©will©fluctuate©with©tank©level©until©a©temporary© equilibrium@oint@s@eached@vhere@he@nlet@low@natches@he© outlet@low@rom@he@ump.@Thus@ar,@nly@lgorithms@vhere© speed@varies@inearly@vith@evel@have@been@in@use,@however© exploring©adding©a©nonlinearity©can©potentially©result©in© specific@nergy@eductions@or@ump@ystems.@Especially@rom systems@ike@3@n@Figure@,@t@s@ossible@hat@eveloping@an@ algorithm@that@results@in@chigher@average@sump@evel,@and© lower@verage@ump@peed@or@@iven@perational@eriod@an© bring@bout@fficiency@ains.@

Compared@@@n@lgorithm@where@ump@peed@s@@inear© functional@elationship@f@ump@evel,@@urved,@oncave@up© relationship@ne@nay@esult@n@@eduction@n@pecific@nergy© due@o@peration@at@chigher@verage@ump@evel@and@ower© average@ump@peed.@figure@@hows@ow@@otential@oncave© up@control@function@compares@to@a@linear@one@where@pump© speed@s@@unction@f@evel.© ©

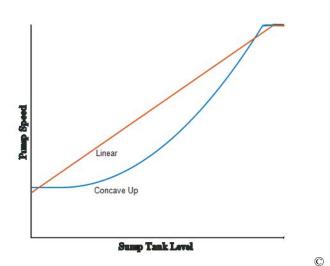
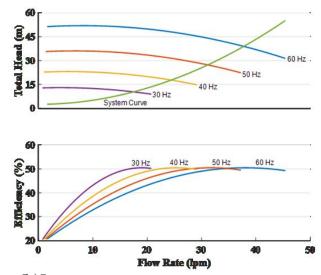


Fig.G. @ump@peed@s@Cunction@f@ump@velCor@inear@nd@oncave@p© control@elationships.© ©

Experimentally, Che@urvature@fChe@uadratic@erm@an&e© altered@offind@n@ptimum@one.@fChe@urvature@reaches@@ certain@value, CitCis@possibleCthe@pumpCspeed@will@actually@ increase@o@n@xcessively@high@alueGor@@prolonged@eriod@ due@ofhe@ower@nitial@reaction@o@ncreasing@ump@evel@rom@ anCinletCflow@spike.CTheCexactCoptimumCcurvature@canCbe@ determined@or@@articular@ump@ystem@y@xperimentation.C It@hould@lso@e@oted@hat@fGuch@@ontrol@nethod@vere@oC result@n@avings,Qhe@xact@lgorithm@ould@be@programmed@ directly@nto@an@xisting@ariable@evel@ontrol@program@withC minimal@mplementation@ost@ue@o@ts@implicity.@

III. EXPERIMENTAL SETUP©


© TestingCofCtheCproposedCcontrolCalgorithmCwasCdoneC experimentallyConCaCpilotCscaleCpumpCstation.CDataCwasC collectedCandCanalyzedCtoCdetermineCifCthereCwereCspecificC energyGeductions.The@xactGnethodsQsedGorGevelopingCheC nonlinearControl@lgorithms@re@ighlighted@nChisGection.C

A. Description of Pilot Scale Design

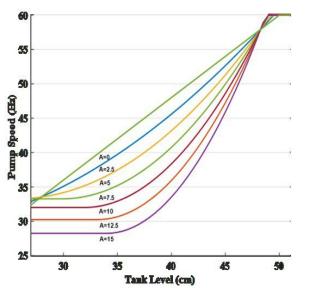
A@ilot@cale@ump@tation@s@esigned@or@xperimenting© with@ifferent@lgorithms.@A&ylem@.75HP@entrifugal@ump@ is@sed@o@raw@oom@emperature@vater@rom@@8@entimeter© (20@nch)@ump@ank@hat@esides@.61@neters@2@eet)&elow@he© elevation@f@he@ump.@he@ump@requency@s@ontrolled@y@© 1HP@ECO-Westinghouse@variable@peed@rive@VFD),© which@eceives@oth@un/stop@nd@requency@ommand@ia@@-10V@nalog@ignal@rom@nAllen@radley@licrologix© Programmable@.ogic@ontroller@PLC).@vater@s@umped@ver© a@otal@istance@f@0@eet@rom@he@ump@o@089@iter@50© gallon)@ank@hat@s@ocated@.5@eet@bove@round@evel,@vhich© comprises@he@tatic@ead@n@he@ystem.@

Fittings@n@he@ipe@ystem@nclude@@ull-bore@nanual@all© valve,@@wing@heck@alve,@@lobe@alve@n@he@ischarge© side@sed@or@ntroducing@rictional@esistance@nto@he@ystem,© as@vell@s@everal@0-degree@lbows.@An@ntegral@low@neter@s@ also@ccated@n@he@ischarge@ide,@vhich@ecords@he@otal@low@ produced@y@he@ump@or@@iven@xperimental@ycle.@

 $\label{eq:alpha} A @imulated @ump/system @urve@vas@reated @sing @AFT @Fathom, @@teady-state@uid@nechanics@oftware@sed@or @modelling@ncompressible@low.@The@urve@s@teveloped@vith@the pump manufacture's data and interpolation at variable speeds, @vith@he@ystem@urve@reated@for@Sump@ank@tvel@f@58@entimeters@20@nches).@ased@n@the@fficiency@urves, @to is@ound@that@ll@perating@oints@rom@0-60@tz@ie@vithin@C10%@f@the@tficiency@oint@BEP)@t@@iven@peed.@this@figure@s@hown@tow:@$

 $\label{eq:Fig.G.Calibration} Fig.G.Calibration (Control of Control of Contr$

Inlet@owtothe@ump@omes@romthe@89@iter@50@allon)@ tank,@s@vell@s@95@iter@25@allon)@ank@hat@llows@or@ simulating@eak@owtates.@low@ate@s@nodulated@vith@wo@ on-off@alves,@s@vell@s@@roportional@nalog@ontrol@alve@ that@lso@eceives@O-10V@nalog@ignal@romthe@LC.@ picture@f@he@ilot@cale@tation@s@hown@elow@n@igure@.@ ©


 $\label{eq:Fig.G.Ca} Fig.G.Ca) \mbox{$\ensuremath{\mathbb{C}}\$

C

The@LC@rogramming@oftware@vas@sed@o@ontrol@ll© process@arameters,@ncluding@ump@ontrol@lgorithms@nd© sump@nlet@low@ate.@rocess@ata@vas@ollected@ia@erial© communication@nd@ent@o@fuman@Machine@nterface@HMI)© for@iewing@nd@nalysis.@ump@ower@onsumption@vas© recorded@hrough@plug@oad@ogger@t@n@nterval@f@ne© second@nd@s@lso@ollected@ia@ata@ollection@oftware.@At© the@nd@f@very@low@ycle,@he@ump@ank@evel@s@eturned@o© a@redetermined@alue,@nd@he@ext@ycle@ommences.©

B. Proposed Algorithm

The@onlinear@peed@ersus@evel@ontrol@lgorithm© experimented@vith@s@Quadratic@unction@hat@s@oncave@p© and@aries@n@urvature@nly.@igure@@hows@he@lgorithm© where@peed@s@@unction@f@evel@vith@aried@urvature@A© value)@hat@s@ested@xperimentally.@

 Tank Level (cm)
 C

 Fig.G.Experimental@oncave@p@peed@ontrol@urves.©A"@s@he@urvature©
 value.@he@ump@ank@evel@s@hown@ere@n@entimeters.©

 C
 C

The@inear@unctional@elationship@A=0)@s@hown@irst,@vith© increasing@A@alues@isted@elow@onsecutively.@or@his© experimental@etup,@ince@he@ump@ank@naximum@eight@s© 50.8@entimeters@20@nches)@nd@he@naximum@ump@peed@s© 60Hz,@he@ollowing@inear@peed@ersus@evel@ontrol@unction© is@reated:©

 $\label{eq:constants} The @urves@re@reated @y @pecifying @he@esired@ndpoints, @ and @hen@dding @hem @o @he@inear@ontrol@unction. @he@ defining @haracteristic@f@ach@uadratic, @which@s@he@ curvature, @s@efined@s@he@@alue, @which@s@isted@s@ experimental@onstants@n @quation @5): @$

 $^{\odot}$

(((1)) ((1)

 $B = \frac{A}{\left(\frac{L1}{2} - \frac{L2}{2}\right)^2}$

 $where {\tt Ges} {\tt G} qual {\tt Go} {\tt G} {\tt Gonstant}, {\tt Gnd} {\tt G}_1 {\tt and} {\tt G}_2 {\tt are} {\tt Che} {\tt Gonstant}, {\tt Gnd} {\tt G}_1 {\tt and} {\tt G}_2 {\tt are} {\tt Che} {\tt Gonstant}, {\tt Gnd} {\tt G$

 $The {\tt Q} quation {\tt Q} f {\tt Che Q} urve {\tt Q} {\tt Q}$

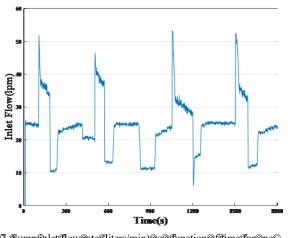
 $C = -A + B^* \left(L - \left(\frac{L_1 + L_2}{2} \right) \right)^2$

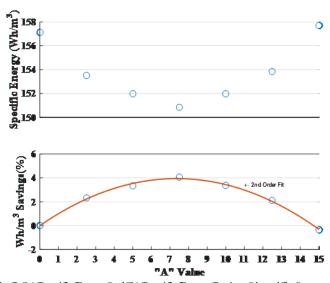
To @et @he @ctual @peed @ersus @evel @control @urve, @ @s @ added @o @he @inear @peed @ S, @ o @ one @p @vith @he @ctual @peed @ curve @, @hown @n @ quation @7). @

The@lgorithm@tself@s@reated@nd@hen@mplemented@sing@PLC@adder@gic@rogramming,@vhere@he@iquid@evel@measurement@s@he@nput@nd@he@ump@peed@s@he@utput.@The@esign@f@he@ontrol@lgorithm@onsists@f@pecifying@he@level@ndpoints,@l@nd@2,@nd@hoosing@nA@alue@hat@maximizes@he@ystem@fficiency@ased@n@he@haracteristics@of@he@ndividual@umping@ystem.@ssentially,@he@alue@fA@can@e@uned@n@rder@maximize@ystem@fficiency.Since@there@s@o@rror@nput@o@he@ algorithm@nd@herefore@o@dditional@esign@parameters@re@considered.@

C. Test Flow Regime

The@xperiments@onsist@f@@est@low@egime@ver@© period@f@800@econds,@vhere@he@nlet@low@o@he@ump@s© controlled@o@neet@@ynamic@low@et@oint.@This@low@egime© is@epeated@or@ach@est@ycle.@igure@@how@data© collected@uring@ne@f@he@ycles@o@how@vhat@he@low@ regime@ooks@ike@ver@n@800@econd@eriod.Noise@ooking© features@n@he@ata@re@@esult@f@scillatory@ehavior@f@he© analog@ontrol@alve.@




Fig. Ø. Sump@nlet@ow@ate@liters/min)@s@@unction@f@ime@or@ne© experimental@ycle.@his@xact@low@egime@s@epeated@or@ll@ycles.© ©

IV. RESULTS©

C

@ ach@pump@run@of@acsingle@curvature@consisted@of@three@ cycles,@where@he@ank@evels@were@reset@o@@predetermined@ value@etween@ycles.@figure@@hows@he@pecific@nergy@se@ of@ach@articular@urvature, denoted by "A" value, with A=0 representing@he@inear@nly@elationship.@

C

TABLEO .@Experimental@E@alues@nd@%@avings©

Parameter	A Value							
	0	2.5	5.0	7.5	10.0	12.5	15.0	
Specific	157.1©	153.5©	152.0©	150.8©	152.0©	153.8©	157.7@	
Energy	±@.5©	± 0.4 \odot	±0.3©	±0.7©	± 0.3 °C	±0.1©	±0.3©	
(Wh/m^3)	©	©	©	©	C	C	©	
		2.32©	©	4.08©	3.37©	2.12©	©	
% Savings	-©	±0.2©	3.33© ±0.2©	±0.4©	±0.1©	±0.1©	-0.35© ±0.2©	
(Ô							

 $\label{eq:constraint} The @specific @energy @roughly @follows @a@second @order @parabolic @elationship @with @minimum @t @A=7.5. @Jsing @n @ @value @f @f 5 @actually @eads @o@an @ncrease @n @specific @energy @compared @o@inear@ontrol, @ndicating @hat @here @s@n @ptimum @curvature @o@he@lgorithm @omewhere @etween @A=0 @nd @f 5. @ In @ddition, @rocess @arameters @ncluding @verage @ump @speed @are @collected @nd @lotted @or@ach @@alue. @ @$

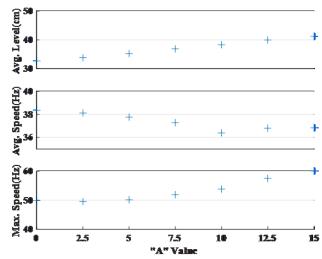
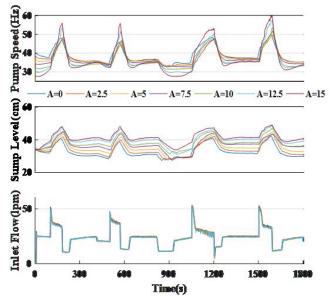



 Image: Construction of the construc

C

C

C

It@s@pparent@rom@he@peed@ersus@ime@esults@hat@s@heO A@value@increases,@the@absolute@maximum@recorded@speed@ increases. However, Cor @ @alues @reater Chan @.5, Che Cluration © of@peration@t@igh@peeds@ncreases@ubstantially.@or@A=15.@ when@flow@rate@reaches@one@of@its@four@peaks,@the@speed@ increases@o@bove@0Hz@or@@otal@f@78@econds@n@verage,© substantially@nore@han@he@3@econds@for@A=7.5.@Based@n@ the@ffinity@aws,@ince@ump@ower@ncreases@ubically@vithO speed,@he@nergy@use@ncreases@trastically@turing@teriods@fC high@low@ue@o@he@ump@perating@t@eally@tigh@peeds@orO an@xtended@luration.@At@he@ninimum@pecific@nergy@value© of@A=7.5,@while@he@absolute@naximum@peed@51.9@Hz)@was@ higher@han@hat@or@A=0@49.9@Hz),@he@luration@f@peration@ atCtheCmaximumCspeedCwasCcomparativelyCsmall,CandCtheC reduced@speed@during@times@of@lower@inlet@flow@resulted@in@ significant@specific@energy@savings@compared@to@the@linear@ control.@The@otal@perational@ime@at@peeds@f@reater@han@ 45Hz@vas@48@econds@or@A=0,@96@econds@or@A=7.5,@nd@ 313@econds@or@A=15.@he@ame@rends@an@e@een@n@igure@ 11,@vhere@ctive@ower@onsumption@s@nonitored@ver@ime.@

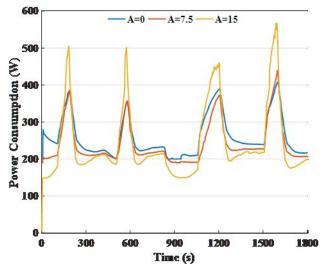


Fig.@1.@ctive@ower@lotted@or@inear@nd@urvature@alues@f@.5@nd@5© ©

C

 $substantially @ower @pecific @nergy @ompared @othe @A=0, @n @othe @rder @f @ \cont & cont &$

TA	BLE	.@Experime	ntal@roce	ss@arame	ter@alues©

Parameter©	A Value							
	0	2.5	5.0	7.5	10.0	12.5	15.0	
Avg. Tank Level (cm)	32.73±© 0.03© ©	33.73© ±€0.09© ©	35.30@ ±© 0.04© ©	36.81 ±© 0.13© ©	38.31 ±© 0.05© ©	39.98© ±€.03© ©	41.24© ±0.05© ©	
Avg. In. Flow Rate (lpm)	24.19© ±0.07© ©	24.18© ±0.02© ©	24.05© ±0.03© ©	23.95© ±0.01© ©	23.77© ±0.01© ©	23.65© ±0.05© ©	23.48© ±0.04© ©	
Avg. Pump Speed (Hz)	38.36© ±0.06© ©	38.12© ±0.09© ©	37.78 ±0.04© ©	37.26 ±0.07© ©	36.41 ±0.06© ©	36.79© ±0.07© ©	36.83© ±0.09© ©	
Max. Pump Speed (Hz)©	49.85© ±0.07© ©	49.60© ±0.10©	50.20 ±0.05©	51.90 ±0.08©	53.80 ±0.07©	57.57© ±0.08©	60.00© ±0.10©	
Total Pumped Flow	0.8121© ±©	0.807© ±©	0.801© ±©	0.794 ±©	0.787© ±©	0.778© ±©	0.7693© ±©	
(m^3/cycle)	0.0006©	0.003©	0.001©	0.001©	0.001©	0.0006©	0.002©	

0 0 0 0

V. CONCLUSION©

This©paper©has©examined©an©energy©efficient©control© algorithm@or@ump@tations@asked@vith@ontrolled@ump@evel,© and@as@resented@xperimental@esults@howing@pecific@nergy© reduction@n@xcess@f@%@ompared@vith@onventional,@inear© variable@evel@ontrol.@While@he@xact@mount@f@avings@vill© depend@n@pecific@ump@tation@arameters,@he@xperimental© data@shows@that@here@is@savings@from@varying@pump@speed© nonlinearly@vith@evel,@nd@that@here@s@n@ptimum@oncave@p© curve@that@roduces@he@nost@eduction@n@pecific@nergy.@

IV. REFERENCES©

 $^{\odot}$

- [1] Goldstein, R., and Smith, W. (2002). "Water & sustainability (Vol. 4): U.S.@lectricity@onsumption@or@water@upply@&@reatment—The@next© half century." Technical Rep., Electric Power Research Institute (EPRI), Palo©Alto,©CA.J.©Clerk©Maxwell,©A©Treatise©on©Electricity@and© Magnetism,@rd@d.,@ol.@.@xford:@larendon,@892,@p.68–73.©
- © [2] I. Bakman, C. Gevorkov@ndCV. CVodovozov, C'Predictive@ontrol@f@C variable-speed@nulti-pump@notor@rive, "@014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), @stanbul, @014, @p. Cl 409-1414.K. Elissa, "Title of paper if known," unpublished.©
 - [3] Y.CTang@and@S.CZhang,C'A@Model@Predictive@Control@Approach@to@ Operational@Efficiency@of@Intake@Pump@Stations,"@010 International Conference on Electrical and Control Engineering,@
 - [4] Zhang, Zijun & Zeng, Yaohui & Kusiak, A. (2012). Minimizing @ump energy ©in ©a© wastewater ©processing ©plant. © Energy. ©47. ©505–514. © 10.1016/j.energy.2012.08.048. ©
 - [5] FLYGT,@@ylem@rand@2013).@variable@peed@vastewater@umping.C White Paper,@trieved@romC http://www.wioa.org.au/operator_resources/documents/XylemVariableS peedPumping.pdf