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ABSTRACT 
Solving the transient compressible flow equations is hard. 

To help engineers make everyday decisions, simplified methods 
have been developed. One such simplification is used in the 
estimation of transient forces in steam pipe systems. An 
incomplete understanding related to gas wave speed has resulted 
in a method which does not reliably give conservative pipe force 
estimates, potentially resulting in unsafe designs. This paper 
develops gas wave speed predictions from first principles for 
compression waves moving into a non-zero steady-state flow. It 
is shown how the length of a family of waves steepens more 
quickly than previously thought. Implications for transient pipe 
force estimation are discussed. 

KEYWORDS: 
Steam hammer, piping loads, transient simulation, transient 

compressible flow 

NOMENCLATURE 

Variables and symbols 
a wave speed (ft/s / m/s) 
A cross-sectional area (ft2 / m2) 
c acoustic (sonic) velocity (ft/s / m/s) 
cp specific heat at constant pressure 

(Btu/lbm-R / kJ/kg-K) 
D diameter (ft / m) 
f friction factor, Darcy-Weisbach (-) 
F force (lbf / kN) 
𝔽𝔽 Aggregated parameter in Eq. 25 (units as in Eq. 25) 
h static enthalpy (Btu/lbm / kJ/kg) 
ho stagnation enthalpy (h + V2 / 2) 

(Btu/lbm / kJ/kg) 
g gravitational acceleration (32.2 ft/ s2 / 9.81 m/s2) 
L length (ft / m) 
P static pressure (psi / kPa) 
𝑄̇𝑄 heat rate (Btu/hr / kW) 
t time (sec) 
t = 0+ time increment just after valve starts to close (sec) 

tc closing time of a valve (sec) 
V fluid velocity (ft/s / m/s) 
x axial distance (ft / m) 
β coefficient of volume expansion (1/R / 1/K) 
γ isentropic expansion coefficient (-) 
ρ static density (lbm/ft3 / kg/m3) 
Ɵ pipe slope angle (degrees) 

Subscripts 
b back (of wave family) 
f front (of wave family) 
J Joukowsky Eq. 
M minus (direction in pipe) 
P plus or positive (direction in pipe) 
SS steady-state 

1. INTRODUCTION
The topic of transient compressible flow has many

important applications in industry. Among these are the 
prediction of: 

• pipe forces in high pressure steam piping in nuclear and
fossil power stations during shut down events

• the rate of pressure change in gas turbine supply
conditions during system transients in order to avoid
unplanned shut downs

• the disruption of flow conditions to air and gas
compressors to avoid unplanned shut downs

• pipe forces during pressure relief events
• pipe flow during tank blowdown and charging events

The complications of accurately simulating such behavior 
have been noted by many authors over many decades (Safwat, 
1978 (1), Thorley and Tiley, 1987 (2), Vardy and Pan, 2000 (3)). 
As a result, it is often the case that simplified calculation methods 
have been adopted to assist engineers in making practical design 
decisions. However, when evaluating finite magnitude and finite 
length waves, the authors note frequent misconceptions in 
published methodologies. Some of these misconceptions can 
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result in significantly unconservative predictions used for design 
purposes. 

The purpose of this paper is to untangle some of these 
misconceptions as they relate to wave speed in steam and gas 
piping. More specifically, it is typical in industrial systems that 
waves have a finite magnitude (they cannot be accurately treated 
with infinitesimal wave methodology) and, perhaps more 
importantly, they have a finite length (as part of a wave family, 
discussed below). In other words, they are not instantaneous. 
They have a starting time (e.g., when a valve begins to close) and 
an ending time (e.g., when the valve finally closes). As is 
commonly known, this finite process over time generates a 
family of waves. The family of waves results when, during each 
infinitesimal increment of time, the valve position changes 
slightly thereby generating a new incremental wave. Over the 
entire valve closure time numerous incremental waves are 
generated. These waves are referred to here as a wave family. 
The length of this family of waves can change with time. Why? 
Because the wave speed at the front of the wave family is not the 
same as the wave speed at the back. 

Properly understanding why this length changes over time 
leads to a better understanding of how fast a family of 
compression waves can steepen (i.e., the back of the wave family 
catching up with the front). This has immensely important 
applications in predicting forces (e.g., on pipe sections bounded 
by direction changes such as elbows). If a wave can steepen more 
quickly, it can exert a greater imbalanced force when it passes 
through a given pipe section. 

In order to better understand why wave steepening is 
important, we will first give a summary of calculating transient 
pipe forces in gas systems. Second, an analytic solution of 
compressible gas flow will be reviewed for the case of perfect 
gases in frictionless, adiabatic pipe flow. Fortunately, the 
analytical solution will help us clearly determine gas wave speed 
and see how and why wave steepening happens. Third, 
simulation results of compressible flow of real gases with 
friction included will be discussed. This will be compared and 
contrasted to analytic solutions to better understand the wave 
steepening effect in industrial systems. 
 
2. ESTIMATING TRANSIENT FORCES IN GAS PIPING 

RUNS 
 

2.1 Background and history 
The estimation of forces in piping runs involves the rigorous 

application of Newton’s Second Law of Motion to the pipe 
structure. The acting forces on a pipe control volume are those 
from the transient fluid motion. Transient compressible flow 
solutions are difficult to obtain, especially on real world systems 
with real gas behavior and friction. This means that applying 
Newton’s Second Law to determine transient forces on a pipe 
control volume is often complicated by the lack of a reliable flow 
solution.  

To make this conundrum as simple as possible to grasp, 
consider trying to apply Newton’s F = ma when one does not 

know the mass, m, or the acceleration, a. One has to know these 
in order to apply Newton.  

In a large majority of gas systems the relatively low gas 
density (as compared to liquids) means that transient pipe forces 
are quite small or even negligible. In such cases, there is no need 
to deal with the complexity of estimating forces from Newton’s 
Second Law. However, there are some applications where the 
transient forces are not negligible, and engineers must deal with 
the complexity somehow so they can ensure their gas system 
designs are safe. One such application is steam hammer in power 
station piping. 

In the 1980s two papers were written that provide a 
foundation for how to estimate transient forces. The first paper 
by Lee and Goodling, 1982 (4) explains that, by the early 1980s, 
hard experience in modern power stations was teaching 
engineers that they needed to take more seriously the ability of 
transient forces in steam systems to cause significant damage to 
piping and pipe structural supports. Their paper gives a proper 
explanation of applying Newton’s Second Law to estimating 
pipe forces due to steam transient effects. They also appear to be 
the first to introduce a simplifying method of force estimation 
based on the Joukowsky equation and valve closure times. 

A few years later a second paper was written (Goodling, 
1989 (5)) that explicitly laid out a step-by-step methodology for 
the simplified transient force estimation introduced in Lee and 
Goodling, 1982 (4). These two papers make up what is today 
known to engineers around the world as “the Goodling Method”. 
One can see how this method has become standard engineering 
practice in other papers such as Stakenborghs and Dziuba, 2009 
(6) and Moody and Stakenborghs, 2018 (7). It is commonly 
accepted that the Goodling Method provides conservatively high 
transient force profiles. 

One important assumption in the Goodling Method is that 
wave steepening is negligible in pipe runs of length typically 
seen in steam power station applications. Recent years have seen 
a questioning of this assumption and in general a questioning of 
whether the Goodling Method is in fact conservative (Rovagnati 
and Gray, 2014 (8), Rovagnati and Gray, 2015 (9), Mayes, 
Gawande and Williams, 2017 (10) and Mayes and Gawande, 
2018 (11)). These four papers observed the wave steepening 
effects in simulations based on the Method of Characteristics 
(MOC) (8-9) and using a finite-difference based CFD tool (10-
11). The wave steepening effect was observed in pipe run lengths 
that may be found in power station steam systems. This was 
observed by different authors using different tools with different 
transient equation solution techniques – which lends at least 
some credence to the claims.  However, no underlying reasons 
based on physics or theory were given by these authors for this 
wave steepening. As a result, when Moody and Stakenborghs, 
2018 (7) gave a physics-based reason why the wave steepening 
effect presented by the other authors could not be as significant 
as claimed, the matter seemed to have been put to rest. 

Our contention in this paper is that there is more to the story 
on wave steepening and we offer a physics-based reason which 
supports the conclusions in the four papers [8-11] which question 
Goodling. We argue that the physics-based explanation of 
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Moody and Stakenborghs, 2018 (7) overlooks critical details and 
is not valid. As noted in our Introduction, this is significant 
because it means that standard engineering practice for 
estimating transient pipe forces may not be conservative – 
potentially leading to unsafe designs in existing fossil and 
nuclear power stations currently in operation. 

 
2.2 Summary of transient pipe force calculation for 
instantaneous compression event 

Unfortunately, there is not enough space in this paper to 
offer a thorough explanation of transient forces in gas piping. As 
noted earlier, the discussion of Newton’s Second Law applied to 
transient steam flow outlined by Lee and Goodling 1982 (4) was 
sound. The authors explore this in detail in Lang and Walters, 
2022 (12). A brief summary will be given here before moving on 
to the reasons why waves steepen more quickly than previously 
thought. 

Consider a system we all have experience with – a garden 
hose. When steady flow through the hose is established, and the 
hose is restrained at each endpoint (by the supply nozzle at one 
end and a human hand at the other), the hose does not move. It 
is in equilibrium because all forces add to zero. Forces do exist 
(pressure, friction, gravity, etc.) but they all negate each other. 

However, when a transient is introduced (e.g., a human hand 
suddenly closes off the flow at the discharge) the hose will often 
move. This movement is due to temporary imbalanced forces 
caused by waterhammer. Once a new steady-state is established, 
the equilibrium in forces once again occurs and the hose stops 
moving. 

When discussion is given in this paper on transient force 
calculation, it is focused completely on this short duration 
imbalance which exerts forces on the hose (or pipe) causing it to 
move if not properly supported. If the hose/pipe supports are 
placed in the proper location with proper strength, the hose/pipe 
will not move. But in order to prevent the movement, the 
supports must take the loads which are generated by the 
transient. Steam hammer and gas transients work in a generally 
similar manner. 

Consider Fig. 1. For simplicity, assume the gas flow is 
frictionless and adiabatic and the pipe is horizontal. This means 
the initial, steady-state (SS) conditions are uniform everywhere 
in the pipe. As such, the pressure and velocity everywhere are 
PSS and VSS. A valve is closed instantly somewhere downstream, 
generating a single compression wave which moves from right 
to left at wave speed aM = VSS – cSS. The wave front will pass 
through the pipe run referred to as Leg 1-2. Fig. 1 shows a 
snapshot of time with the wave passing through this pipe leg. 
This pipe leg has 90-degree elbows at each end point labeled as 
1 and 2. The gas behind the wave front (at the right) has an 
increased pressure shown in the red shaded area in Fig. 1, and 
the pressure is Phigh. 

The dominant transient forces in this example will be the 
pressure forces acting on the projected cross-sectional area in the 
x direction of pipe Leg 1-2. We will call this area A(L,1-2)x. The 
projected area equals the cross-sectional area of Leg 1-2. 

Neglecting other terms in Newton’s Second Law for 
simplicity yields the instantaneous force of the fluid on the pipe 
in the x direction as 

 
𝐹𝐹𝑥𝑥 ≈ 𝑃𝑃2𝐴𝐴(L,1-2)𝑥𝑥 − 𝑃𝑃1�𝐴𝐴(L,1-2)𝑥𝑥� 
 
Or, more simply, 

 
𝐹𝐹𝑥𝑥 ≈ (𝑃𝑃2 − 𝑃𝑃1)𝐴𝐴(L,1-2)𝑥𝑥                         (1) 

 
Because the pressure at P2 is the higher pressure and equal 

to Phigh, the fluid force at location 2 is higher than at location 1. 
The net force acts on the pipe in the positive x direction, pushing 
the pipe Leg 1-2 to the right. This transient force will last until 
the wave front has moved past location 1. After that, the transient 
force, Fx, will return to zero as the pressures at locations 1 and 2 
will be the same. 

 

 
 
 

FIGURE 1: PIPE SCHEMATIC WITH ELBOW PAIR AT 
LOCATIONS 1 AND 2 SHOWING PRESSURE WAVE 
MOVING FROM RIGHT TO LEFT AT WAVE SPEED aM 
 

 
(a) Instantaeous 

 
(b) Finite Duration 

FIGURE 2: TRANSIENT FORCE IN PIPE LEG 1-2 FROM 
(A) AN INSTANTANEOUS COMPRESSION WAVE AND 
(B) A FINITE DURATION (NON-INSTANTANEOUS) 
WAVE 
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The force over time will simply be a square wave as shown 
in Fig. 2a. The maximum force is determined from Eq. 1. The 
duration of the non-zero force in Fig. 2a is just the length of pipe, 
L(L,1-2) , divided by the wave speed absolute value, aM: 

 

∆𝑡𝑡 =
𝐿𝐿(L,1-2)

|𝑎𝑎𝑀𝑀|  

 
2.3 Summary of transient pipe force calculation for 
finite duration compression event 

Transient events in real systems are never instantaneous. 
What this means is that a valve which closes over some finite 
time generates a family of compression waves upstream of the 
valve. Depending on the length of time to close the valve and the 
length of the pipe leg, a transient force profile will usually look 
more like that in Fig. 2b. Here the maximum force is less than 
calculated in Eq. 1 because the length of the wave family 
generated during the finite valve closure time is longer than the 
pipe leg length. Hence, the pipe leg never experiences the full 
pressure difference as shown in Eq. 1 and Fig 1. If wave 
steepening is negligible, then all pipe legs of equal length 
bounded by elbows will have the profile as in Fig. 2b regardless 
of where they are located along the pipe length. For more on this 
see Goodling, 1989 (5). 

 
3. TRANSIENT GAS FLOW SIMPLE ANALYTICAL 

SOLUTION 
 

3.1 Fundamental equations 
Before considering the flow of real gases with friction, some 

key insights can be obtained by considering frictionless, 
adiabatic flow of a calorically perfect gas in a constant diameter, 
horizontal pipe. Anderson, 2004, Section 7.6 (13) offers a clear 
development of the flow equations. 

 
From Mass, Momentum, and Energy Conservation, Eqs. 2 and 3 
can be derived: 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑉𝑉 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜌𝜌𝑐𝑐2 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0                             (2) 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑉𝑉 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 1
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0                             (3) 
 
Sonic velocity symbols in gas dynamic literature are 

conventionally referred to as either c or a. Here we will use c and 
reserve the symbol a for gas wave speed. The velocity, V, is 
relative to the pipe axial coordinate direction, x, and can be 
positive or negative. On the other hand, the sonic velocity, c, is a 
thermodynamic parameter and always positive with no 
directional qualities. 

To make the differences more clear we will add a subscript 
to a – typically aP or aM for the wave speed in the plus and minus 
axial x-coordinate direction. As a result, aP will always be 
positive and aM will always be negative for subsonic flows.  

While this is potentially confusing to those accustomed to 
using a to represent sonic velocity in gases, this offers the 
advantage of having common symbology for wave speed with 
that conventionally used in liquid waterhammer theory. Note 
also that in liquid waterhammer theory, it is commonly assumed 
that |a| >> |V| and thus V can be ignored when determining liquid 
wave speed. In other words, a is the same absolute value in the 
plus and minus directions for liquids. In this paper the terms gas 
“wave velocity” and gas “wave speed” will be used 
interchangeably. 

Eqs. 2 and 3 can be combined and solved along positive and 
negative characteristic lines such that: 

 
𝑑𝑑𝑑𝑑 ± 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 = 0                             (4) 
 
along a line of constant V + c for the positive value in Eq. 4 and 
V – c for the negative value. 

Using the definition of sonic velocity and basic isentropic 
relationships Anderson shows that the following is true for the 
C+ characteristic: 

 
𝑉𝑉 + 2𝑐𝑐

𝛾𝛾−1
= Const1                             (5) 

 
and for the C- characteristic: 

 
𝑉𝑉 − 2𝑐𝑐

𝛾𝛾−1
= Const2                             (6) 

 
where γ is the isentropic expansion coefficient.  

These two constants, Const1 and Const2, are Riemann 
invariants.  

 
3.2 Application to a finite duration compression wave 

Consider the pipe in Fig. 3 with length, L, and diameter, D. 
The pipe is frictionless, horizontal and adiabatic and thus the 
initial, steady-state (SS) conditions in the pipe are uniform 
everywhere. At time zero a valve begins to close at point 2. The 
velocity at the exit, point 2, is reduced linearly from VSS to zero 
over some time, tc , as shown in Fig. 4. The pressure and 
temperature at point 1 are maintained constant. 

 

 
FIGURE 3: FRICTIONLESS, HORIZONTAL PIPE WITH 
INITIAL FLOW FROM LEFT TO RIGHT. 
 

As soon as the valve starts to close (at t = 0+) the first 
compression wave is generated and starts moving to the left at a 
wave velocity, aM, of: 

 
𝑎𝑎𝑀𝑀,𝑡𝑡=0+ = 𝑉𝑉𝑆𝑆𝑆𝑆 − 𝑐𝑐𝑆𝑆𝑆𝑆                             (7) 
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FIGURE 4: VELOCITY REDUCTION PROFILE IN FIG. 3 
PIPE AT EXIT POINT 2 
 

The wave speed in Eq. 7 is that at the front of the wave 
family. As the velocity is continuously reduced at the valve, each 
increment of time will generate another compression wave into 
the disturbed flow field behind the preceding waves. When the 
valve finishes closing then the final wave of the wave family will 
be generated and travel to the left at a wave speed of: 

 
𝑎𝑎𝑀𝑀,𝑡𝑡=𝑡𝑡𝑐𝑐 = 𝑉𝑉𝑡𝑡𝑐𝑐 − 𝑐𝑐𝑡𝑡𝑐𝑐                         

    (8) 
 
But V at tc is zero because the valve is closed, so Eq. 8 

becomes: 
 

𝑎𝑎𝑀𝑀,𝑡𝑡=𝑡𝑡𝑐𝑐 = −𝑐𝑐𝑡𝑡𝑐𝑐                             (9) 
 

The question then becomes, what is ctc in Eq. 9? If it is 
greater in magnitude than the wave speed at the front in Eq. 7, 
the wave family will steepen and the back of the wave family 
will eventually catch up with the front if the pipe is long enough. 

We can solve for Const1 in Eq. 5 using the known and 
spatially uniform steady-state conditions: 

 
𝑉𝑉𝑆𝑆𝑆𝑆 + 2𝑐𝑐𝑆𝑆𝑆𝑆

𝛾𝛾−1
= Const1                             (10) 

 
Since Const1 is Riemann invariant, we can use that to solve 

for ctc knowing that the velocity, V, is zero at point 2 at time tc. 
 

2𝑐𝑐𝑡𝑡𝑡𝑡
𝛾𝛾−1

= Const1                             (11) 
 

Equating Eqs. 10 and 11 allows us to obtain the sonic 
velocity and (from Eq. 9) the wave speed at the back of the wave 
family: 

 
𝑐𝑐𝑡𝑡𝑐𝑐 = 𝑐𝑐𝑆𝑆𝑆𝑆 + 𝛾𝛾−1

2
𝑉𝑉𝑆𝑆𝑆𝑆                             (12) 

 
To make the difference in the front and back of the wave 

family clearer, we will introduce the subscripts f and b for the 
front and back of the wave family: 
 
𝑎𝑎𝑓𝑓 = 𝑎𝑎𝑀𝑀,𝑡𝑡=0+   
𝑎𝑎𝑏𝑏 = 𝑎𝑎𝑀𝑀,𝑡𝑡=𝑡𝑡𝑐𝑐   

Using Eqs. 7, 9 and 12 we can now determine the wave 
speed at the back of the wave family based on steady-state 
conditions only: 

 

𝑎𝑎𝑏𝑏 = 𝑎𝑎𝑓𝑓 − 𝑉𝑉𝑆𝑆𝑆𝑆 �
𝛾𝛾+1
2
�                             (13) 

 
At first glance Eq. 13 seems to be saying that ab is less than 

af and, hence, the back of the wave will travel more slowly than 
the front. However, remember that ab and af  have directions. And 
they travel in the opposite direction of the steady-state velocity, 
VSS. In other words, af and ab are negative values, so the back of 
the wave family travels faster in the negative x-direction than the 
front by the absolute value of 𝑉𝑉𝑆𝑆𝑆𝑆 �

𝛾𝛾+1
2
�. This, therefore, is the 

speed at which the wave will steepen. To make this clearer going 
forward, we will introduce a new parameter, Δafb: 

 

∆𝑎𝑎𝑓𝑓𝑓𝑓 = 𝑉𝑉𝑆𝑆𝑆𝑆 �
𝛾𝛾+1
2
�                             (14) 

 
An equivalent way of determining Δafb is to subtract Eq. 7 

from 9. The advantage of Eq. 14 is that it is based entirely on 
initial conditions. 

 
∆𝑎𝑎𝑓𝑓𝑓𝑓 = 𝑐𝑐𝑏𝑏 − 𝑐𝑐𝑆𝑆𝑆𝑆 + 𝑉𝑉𝑆𝑆𝑆𝑆                             (15) 
 

Given enough pipe length and time, the back of the wave 
will catch up with the front and form a shock wave. We will call 
this time tshock and the length needed to reach this point Lshock. 
Measuring Lshock as the distance from point 2 (in Fig. 3) it is 
easily observed that: 
 
𝐿𝐿𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜 = �𝑎𝑎𝑓𝑓�𝑡𝑡𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜 
 
and 
 
𝐿𝐿𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜 = |𝑎𝑎𝑏𝑏|(𝑡𝑡𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑡𝑡𝑐𝑐) 

 
Equating these and using Eqs. 7, 9 and 12, one can solve for 

tshock entirely in terms of the initial conditions in the pipe. Then 
Lshock follows from either of the preceding equations. The result 
is: 

 

𝑡𝑡𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜 = �1 + � 2
𝛾𝛾+1

� �𝑐𝑐𝑆𝑆𝑆𝑆
𝑉𝑉𝑆𝑆𝑆𝑆

− 1�� 𝑡𝑡𝑐𝑐                (16) 

𝐿𝐿𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜 = (𝑐𝑐𝑆𝑆𝑆𝑆 − 𝑉𝑉𝑆𝑆𝑆𝑆)�1 + � 2
𝛾𝛾+1

� �𝑐𝑐𝑆𝑆𝑆𝑆
𝑉𝑉𝑆𝑆𝑆𝑆

− 1�� 𝑡𝑡𝑐𝑐   (17) 
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While we have not discussed pressure here in Section 3, it 
can be shown that the pressure at the back of the wave family is 
given by the following (Anderson (13), Eq. 7.86 or Moody (14), 
Eq. 8.10): 

𝑃𝑃𝑏𝑏 = 𝑃𝑃𝑆𝑆𝑆𝑆 �1 + �𝛾𝛾−1
2
� �𝑉𝑉𝑆𝑆𝑆𝑆

𝐶𝐶𝑆𝑆𝑆𝑆
��

2𝛾𝛾 (𝛾𝛾−1)⁄

              (18) 

 
3.3 Example 1  

Consider a numerical example following from the previous 
equations. Assume a horizontal, constant diameter pipe as in Fig. 
3 with frictionless, adiabatic flow of a calorically perfect gas. A 
valve closes at point 2 with a linear velocity profile as in Fig. 4. 
This will generate a family of compression waves that travel 
from the right to left in Fig. 3. The tables below show the inputs 
and calculated values. 

 
Inputs: 

Length (L) 1000 m 
Steady-State velocity (VSS) 41.77 m/s 
Steady-State sonic velocity (cSS) 567.0 m/s 
Steady-State pressure (PSS) 7000 kPa 
γ 1.4 
Closing time (tc) 0.1 sec 

 
Calculated Values: 

Parameter Eq. Value 
Wave speed front of wave family |af| 7 525.24 m/s 
Wave speed back of wave family |ab| 13 575.36 m/s 
Speed at which back catches front (Δafb) 14 50.12 m/s 
Sonic velocity back of wave family (cb) 12 575.36 m/s 
Time for back to catch front (tshock) 16 1.148 sec 
Length where back catches front (Lshock) 17 602.9 m 
Pressure at back of wave family (Pb) 18 7754.6 kPa 

 
Using these values Fig. 5 can be assembled. Here one can 

see the path of the front of the wave family as the lower curve, 
the path of the back of the wave family as the upper curve, with 
both traveling from right to left. Fig. 5 shows how at any given 
time the back of the wave family is catching up with the front. 
Also noted in Fig. 5 is tshock at 1.148 s, and the shock location 
xshock = L – Lshock which is 397.1 m.  

 
Several Regions are noted in Fig. 5. 
• Region 1: This entire region represents the initial, 

steady conditions.  
• Region 2: This is the region inside the wave family 

where conditions continuously vary with x and t. It is 
possible to determine analytical relationships for all 
parameters in Region 2 but these are not shown here as 
they are not needed to support the present study. This 
area is where the family of waves exist. 

• Region 3: This entire region represents the conditions 
after the back of the wave family has passed. 

 

With Example 1 in place, let’s consider what happens to 
transient forces inside the pipe. If the pipe is straight for the 
entire length and restrained at the ends, no transient forces will 
be generated that require additional pipe restraints. But what if 
the pipe is not straight at all points?  

Assume in the Fig. 3 pipe that there are three closely spaced 
elbow pairs in the x-direction like that shown in Fig. 1, perhaps 
needed for the pipe to cross over roads or for mitigating thermal 
expansion of the pipe. Each elbow pair has the same geometry in 
that the vertical rise in the z-direction is the same and the x-
distance between the elbows at the top is the same (specified as 
5 m). Finally, assume these elbow pairs are spaced starting from 
the right at a linear pipe length of 50 m, 300 m and 550 m. In 
other words, the x location of each elbow pair in Fig. 3 is at 950 
m, 700 m and 450 m. Table 1 shows the data for the elbow pair 
locations. Finally, assume the pipe diameter, D, is 1 m. 

 

 
FIGURE 5: PATHS OF FRONT AND BACK OF WAVE 
FAMILY (FROM RIGHT TO LEFT) IN EXAMPLE 1 
 
TABLE 1: LOCATION OF ELEVATED ELBOW PAIRS IN 
EXAMPLE 1 

Elbow Pair ID Distance from 
Valve (m) x (m) 

Leg 1-2 50 950 

Leg 3-4 300 700 

Leg 5-6 550 450 

 
The pressure profile when the front of the wave reaches the 

upstream side of each elbow pair is shown in Fig. 6. Fig. 6 clearly 
shows how the wave steepens as it progresses to the three elbow 
pair locations at 950, 700 and 450 m. 

The bottom graph in Fig. 6 shows a blow up of the top graph 
at each of the elbow locations. Also shown are the pressure 
differences that will drive the transient forces using Eq. 1. It is 
clear that the pressure differences, and hence forces, increase 
significantly as the wave moves to the left and steepens. 

As discussed earlier, a more accurate determination of the 
forces in Fig. 6 would consider all terms in Newton’s Second 
Law (12). In pipe runs of straight pipe with no diameter changes 
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or fittings between elbow pairs (such as in the present example) 
Eq. 1 offers a quick approximation to the forces.  

Using Eq. 1 on the Fig. 6 results obtains the forces shown in 
Table 2.  
 

 
 

 
FIGURE 6: PRESSURE PROFILES AT THREE POINTS IN 
TIME FOR EXAMPLE 1 SHOWS WAVE STEEPENING. TOP 
SHOWS PROFILES AS THEY PROGRESS IN TIME RIGHT 
TO LEFT. BOTTOM SHOWS BLOW UP PROFILES WITH 
THE ELBOW LOCATIONS ALSO SHOWN AS VERTICAL 
LINES. RESULTS DETERMINED USING SIMPLIFIED 
ANALYTICAL SOLUTION. 
 
TABLE 2: APPROXIMATE MAXIMUM TRANSIENT 
FORCES IN EXAMPLE 1 

Elbow 
Pair ID 

Distance from 
Valve (m) 

dP 
(kPa/psid) 

F ≈ dP*A 
(kN/lbf) 

Leg 1-2 50 67 / 10 54 / 12100 

Leg 3-4 300 126 / 18 100 / 22500 

Leg 5-6 550 755 / 110 593 / 133000 

 

Note that Goodling’s Method (calculations not shown here 
for brevity) would yield 52.5 kN (11800 lbf) for all three of the 
pipe run legs in Table 2. It is roughly correct for Leg 1-2, but far 
underpredicts Leg 3-4 and Leg 5-6.  

One observation here is that the Goodling Method is likely 
to be approximately accurate for elbow pairs near the source of 
the transient and before significant wave steepening has 
happened. As the wave travels further from the transient 
Goodling will become less accurate. This is consistent with 
findings by Rovagnati and Gray, 2015 (9).  

Another interesting observation is that the impact of 
compressible flow is often assumed to be of low significance at 
lower Mach numbers. In this example the highest Mach number 
is 0.08. But one can see a significant impact on results. This 
should be a cautionary tale for engineers who are quick to 
dismiss low Mach number gas flow applications as having 
negligible compressibility effects. 

 
4. SOLVING COMPLETE TRANSIENT GAS FLOW 

EQUATIONS 
Including real gas behavior, friction, gravity effects and heat 

transfer in transient compressible flow significantly complicates 
the solution process and closed form analytical solutions are no 
longer possible. But it offers more realistic results. 

Moody, 1990 (14) offers a formulation of the complete 
fundamental equations that lends itself to an MOC solution – 
albeit with grid interpolations required as is typical in gas 
transients (1-3). Moody’s formulation allows for pipe geometry 
changes (non-constant diameter in space and/or time) as well as 
axial heat conduction in the gas. These two elements are not 
considered here leaving us with Moody’s formulation as follows: 

 
From Mass Conservation: 
 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑉𝑉 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

+ 𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0              (19) 
 
From Momentum Conservation: 
 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑉𝑉 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 1
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑓𝑓 𝑉𝑉 |𝑉𝑉|
2𝐷𝐷

+ 𝑔𝑔 sin(𝜃𝜃) = 0              (20) 
 
From Energy Conservation: 
 
𝜕𝜕ℎ𝑜𝑜
𝜕𝜕𝜕𝜕

+ 𝑉𝑉 𝜕𝜕(ℎ𝑜𝑜+𝑔𝑔𝑔𝑔)
𝜕𝜕𝜕𝜕

− 1
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 1

𝜌𝜌𝜌𝜌
𝑄̇𝑄

 𝜕𝜕𝜕𝜕
 = 0 (21) 

The MOC ODE transformation of Eqs. 19-21 is as follows: 

Along the right running path, 
 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑉𝑉 + 𝑐𝑐 : 
 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝜌𝜌𝑐𝑐 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛽𝛽𝑐𝑐2

𝑐𝑐𝑝𝑝
𝔽𝔽 − 𝜌𝜌𝑐𝑐 �𝑔𝑔 sin 𝜃𝜃 + 𝑓𝑓 𝑉𝑉 |𝑉𝑉|

2𝐷𝐷
�   (22) 
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Along the left running path, 
 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑉𝑉 + 𝑐𝑐 : 
 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
− 𝜌𝜌𝜌𝜌 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝛽𝛽𝑐𝑐2

𝑐𝑐𝑝𝑝
𝔽𝔽 + 𝜌𝜌𝜌𝜌 �𝑔𝑔 sin 𝜃𝜃 + 𝑓𝑓 𝑉𝑉 |𝑉𝑉|

2𝐷𝐷
�       (23) 

 

Along the particle path, 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑉𝑉 : 
 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
− 𝑐𝑐2 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝛽𝛽𝑐𝑐2

𝑐𝑐𝑝𝑝
𝔽𝔽 (24) 

 
Where: 
 
𝔽𝔽 = 𝑓𝑓𝑓𝑓�𝑉𝑉3�

2𝐷𝐷
+ 𝑄̇𝑄

𝐴𝐴 𝑑𝑑𝑑𝑑
 (25) 

 
Moody (14) then gives a convenient organization of three 

compatibility equations and a recommended interpolation 
scheme to solve Eqs. 22-24. An implementation of Moody’s 
method (15) will be used here to compare the simplified analysis 
in Section 3 to a more complete analysis. 

 
4.1 Example 2 

Let’s use the same problem statement as in Example 1 but 
now include friction and real gas modelling. We assume the gas 
is air in the model. The boundary condition at point 2 in Fig. 3 is 
represented in the model not as a linear velocity vs. time but as a 
linear mass flow rate vs. time. Simulation results show that the 
velocity is near linear with this boundary condition. Note that the 
inputs are slightly different than in Example 1 because there is 
pressure drop in the pipe and the air is being treated as a real gas. 
The inputs below are from a reliable steady-state solution (15) at 
the pipe endpoint (location 2). 
 
Inputs and Initial Values: 

Length (L) 1000 m 
Diameter (D) 1 m 
Steady-State mass flow rate 1000 kg/s 
Steady-State inlet/outlet velocity (VSS) 42.76 / 44.61 m/s 
Steady-State inlet/outlet pressure (PSS) 7000 / 6702 kPa 
Steady-State inlet/outlet temperature 526.8 / 526.9 C 
Steady-State outlet sonic velocity (cSS) 572.8 m/s 
γ inlet/outlet 1.399 / 1.397 
Closing time (tc) 0.1 sec 

 
The pressure profile results are shown in Fig. 7. Table 3 

shows the predicted maximum pressure differences and forces 
using Reference (12) – not Eq. 1. Comparing these to Example 1 
(Fig. 6 and Table 2) one can make two observations: 
 

1. Wave steepening occurs in a similar fashion to the 
frictionless, perfect gas case. 

2. The forces are similar to those in Table 2 closer to the 
valve (Legs 1-2 and 3-4) even when including real gas 

modelling and friction. At the farthest elbow pair (Leg 
5-6) the forces are significantly lower than Table 2.  

 
Note that a complete application of Newton’s Second Law 

(12) is performed in the simulation (15) to obtain the transient 
forces – and not just the simple Eq. 1 used in Table 2. This is why 
the pressure differences are higher for Legs 1-2 and 3-4 in the 
simulation results shown in Table 3 even though the forces are 
similar to Table 2.  

The second observation above is impacted by several 
phenomena: 

• Fig. 7 clearly shows line pack with the pressure at the 
valve (L = 1000 m) continuing to climb upward after 
the valve has closed. Fig. 7 shows a maximum pressure 
profile when the wave reaches the steam source at the 
left. This appears to be a maximum pressure, but after  
the wave reflects from the steam source the pressure 
continues to rise, which is not shown. However, after 
the first reflection the compression wave turns into an 
expansion wave and the wave steepening is reversed. 
Which means the forces are much lower than in Table 3 
after reflections begin. 

• The wave family at t = 0.1 seconds has not had time to 
steepen. So, it is not surprising the maximum transient 
force in Leg 1-2 is similar to Example 1 and, in fact, 
Goodling’s Method (as noted in Section 3). 

• In Example 1 the flow conditions were everywhere 
uniform in the pipe. Here in Example 2, there is a 
pressure drop due to friction and no conditions are 
uniform. The minimum pressure along the pipe is 
shown in Fig. 7 and that represents the steady-state 
pressure. Once the transient occurs the pressure in the 
pipe only increases – at least until a wave reflection 
occurs. What this means is that as the compression 
wave progresses along the pipe from right to left, the 
available pressure difference between the maximum 
and minimum envelope shrinks as seen in Fig. 7.  

 
Putting these observations together, one can conclude that 

the actual forces generated in transient pipe flow with friction 
will have two competing effects: 
 

1. The wave steepening which makes the transient forces 
increase the further one is away from the source of the 
transient. 

2. The frictional pressure drop which reduces the potential 
driving pressure envelope for transient forces the 
further one is away from the source of the transient. 

 
One can expect to find a location along the pipe of maximum 

transient force where these two competing effects combine to 
create an overall maximum. 
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FIGURE 7: PRESSURE PROFILES AT THREE POINTS IN 
TIME FOR EXAMPLE 2 SHOWS WAVE STEEPENING. TOP 
SHOWS PROFILES AS THEY PROGRESS IN TIME RIGHT 
TO LEFT. BOTTOM SHOWS BLOW UP PROFILES WITH 
THE ELBOW LOCATIONS ALSO SHOWN AS VERTICAL 
LINES. MAX/MIN CURVES ARE ONLY UP UNTIL 1.85 
SEC WHEN FIRST WAVE REACHES THE SOURCE. 
RESULTS DETERMINED USING MOC SOLUTION OF 
EQS. 22-24 (15). 
 
TABLE 3: MAXIMUM TRANSIENT FORCES IN 
EXAMPLE 2 

Elbow 
Pair ID 

Distance 
from 
Valve 
(m) 

dP 
(kPa/psid) 

F (kN/lbf) Time of 
Max 
Force 
(sec) 

Leg 1-2 50 77 / 11 54.5 / 12300 0.103 

Leg 3-4 300 144 / 21 100 / 22500 0.576 

Leg 5-6 550 572 / 83 414 / 93000 1.043 

 
 
 

5. DISCUSSION 
The analysis in this paper clearly shows wave steepening, 

and it shows it can happen much faster and in shorter pipe lengths 
than previously thought – particularly in methods used in power 
station steam piping design. This raises questions about 
simplified methods like the Goodling Method. It appears this 
simplified method inadvertently overlooked something. What 
was it?  

Reviewing a commentary on Goodling in Moody and 
Stakenborghs, 2018 (7) sheds some light on this. It appears that 
when considering how fast wave steepening could occur, the 
authors in (7) essentially used Eq. 15. But they had an oversight 
and neglected to consider VSS in Eq. 15 and only considered the 
difference in sonic velocities. This resulted in Δafb estimated to 
be much lower than determined in our paper and lent credence 
to their conclusion that wave steepening was not important. 
Including VSS in Eq. 15, or just using Eq. 14, gives a more 
accurate picture of how fast wave steepening occurs. However, 
realize that Eqs. 14 and 15 are for perfect gas, frictionless flow. 
When real gases and (especially) friction are included then Eq. 
15 should be fairly close to the initial value of Δafb. Simulation 
results show that Δafb is not constant and in fact reduces with 
time. 

Walters, 2022 (16) applies the findings presented here to 
steam systems and explores the Goodling Method in more depth. 
Other misconceptions in Goodling are discussed and direct 
comparisons are made to the example in Rovagnati and Gray, 
2015 (9). 

 

6. CONCLUSION 
An improved understanding of gas wave speed for 

compression waves is offered and should be considered in future 
gas transient analyses. Simplified methods of estimating 
transient pipe forces do not consider wave steepening and may 
not be conservative – especially at elbow pairs further from the 
source of the transient. Improvements to the Goodling Method 
should be made by the engineering community and a review of 
existing steam systems designed and built using Goodling should 
be considered for safety reasons. 
 
NOTE FROM THE AUTHORS 

This paper has had a circuitous path to publication impacted 
by the COVID-19 virus. It was originally planned to precede 
another paper by the first author, Reference [16]. The preceding 
conference for the present paper was scheduled for early 2022 
and thus before PVP 2022. Due to ongoing COVID-19 concerns 
the early 2022 conference was delayed until late 2022 – which 
was after Reference [16] was published. The Reference [16] 
analyses was based on the present paper and therefore referenced 
the present paper in anticipation of its publication expected in 
late 2022. After Reference [16] was presented in July 2022 the 
late 2022 conference was unexpectedly cancelled in September 
2022. The present paper was therefore withdrawn from the 
cancelled conference and the authors sought another avenue of 
publication. The best option was PVP 2023. Note that Reference 
[16] thus has an incorrect venue reference for the present paper. 
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For general information, in late 2022 the cancelled conference 
was revived by other organizers and is now planned for April 
2023. 
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